Claude Code transcript - page 1/1

Please build a local datatable that combines two data sources: https://www.census.gov/construction/bps/index.html the building permits survey at the MSA / CBSA level and 2) FHFA HPI data. Both datasets should incorporate as much historical data as possible for the MSAs / CBSAs and have tables that are well structured. Put this into a duckdb database.

I'll start by exploring both data sources to understand their structure and availability, then build a DuckDB database combining them.

TaskCreate
Fetch and analyze the Census Bureau Building Permits Survey page to understand available data files, formats, and historical coverage at the MSA/CBSA level.
{
  "subject": "Explore Census Building Permits data source",
  "activeForm": "Exploring Census Building Permits data"
}
Task #1 created successfully: Explore Census Building Permits data source
TaskCreate
Research FHFA House Price Index data availability, formats, and historical coverage at the MSA/CBSA level.
{
  "subject": "Explore FHFA HPI data source",
  "activeForm": "Exploring FHFA HPI data"
}
Task #2 created successfully: Explore FHFA HPI data source
TaskCreate
Download historical building permits data at MSA/CBSA level and process into clean format.
{
  "subject": "Download and process Building Permits data",
  "activeForm": "Downloading Building Permits data"
}
Task #3 created successfully: Download and process Building Permits data
TaskCreate
Download historical FHFA HPI data at MSA/CBSA level and process into clean format.
{
  "subject": "Download and process FHFA HPI data",
  "activeForm": "Downloading FHFA HPI data"
}
Task #4 created successfully: Download and process FHFA HPI data
TaskCreate
Create a DuckDB database with well-structured tables for both building permits and HPI data, with proper schemas and a combined view.
{
  "subject": "Build DuckDB database with both datasets",
  "activeForm": "Building DuckDB database"
}
Task #5 created successfully: Build DuckDB database with both datasets
TaskUpdate
{
  "taskId": "1",
  "status": "in_progress"
}
Updated task #1 status

Let me explore both data sources in parallel.

Task
Explore Census BPS data
{
  "prompt": "I need to explore the Census Bureau Building Permits Survey data. Please:\n\n1. Fetch https://www.census.gov/construction/bps/index.html and understand what data files are available\n2. Look specifically for MSA/CBSA level data files - these are typically CSV or text files\n3. Check URLs like:\n   - https://www.census.gov/construction/bps/msaannual.html \n   - https://www.census.gov/construction/bps/msamonthly.html\n   - Any links from the main page that lead to MSA-level data\n4. Find the actual downloadable data file URLs (CSV, TXT, XLS formats)\n5. Understand the data structure - what columns are available, what time periods\n\nReport back: the exact URLs for downloading MSA/CBSA level building permits data (both annual and monthly if available), the file formats, column structure, and historical coverage period.",
  "subagent_type": "general-purpose"
}
Here is the complete report on Census Bureau Building Permits Survey MSA/CBSA-level data.

---

## Census Bureau Building Permits Survey -- MSA/CBSA Data: Complete Reference

### 1. Overview

The Census Bureau Building Permits Survey (BPS) tracks new privately-owned housing units authorized by building permits. MSA/CBSA-level data is available in two formats (comma-delimited text files and Excel workbooks), from two servers, covering **1980 to present**.

**Important change in January 2024:** The Census Bureau renamed "MSA" files to "CBSA" files and began including Micropolitan Statistical Areas alongside Metropolitan Statistical Areas. A `Metro/Micro Code` field (`2` = Metropolitan, `5` = Micropolitan) distinguishes them.

---

### 2. Primary Data Source: Comma-Delimited Text Files (Recommended)

These are the most machine-readable and have the longest historical coverage.

#### A. CBSA Files (January 2024 -- present)

**Base URL:** `https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/`

| File Type | URL Pattern | Example |
|-----------|-------------|---------|
| Monthly (current month) | `cbsaYYMMc.txt` | `cbsa2401c.txt` |
| Monthly (year-to-date) | `cbsaYYMMy.txt` | `cbsa2401y.txt` |
| Annual | `cbsaYYYYa.txt` | `cbsa2024a.txt` |

**Available range:** January 2024 through October 2025, plus 2024 annual.

**Row count:** ~924 rows (921 CBSAs including both metro and micro areas).

**Columns (29 fields, comma-delimited):**

| Position | Header Row 1 | Header Row 2 | Description |
|----------|-------------|-------------|-------------|
| 1 | `Survey` | `Date` | Period: `YYYYMM` for monthly, `YYYY99` for annual |
| 2 | `CSA` | `Code` | Combined Statistical Area code |
| 3 | `CBSA` | `Code` | Core Based Statistical Area code (5-digit FIPS) |
| 4 | `HHEADER` | (blank) | `2` = Metropolitan, `5` = Micropolitan |
| 5 | `CBSA` | `Name` | CBSA name with state abbreviation |
| 6-8 | `1-unit` | `Bldgs, Units, Value` | 1-unit structures: buildings, units, valuation ($000s) |
| 9-11 | `2-units` | `Bldgs, Units, Value` | 2-unit structures |
| 12-14 | `3-4 units` | `Bldgs, Units, Value` | 3-4 unit structures |
| 15-17 | `5+ units` | `Bldgs, Units, Value` | 5+ unit structures |
| 18-20 | `1-unit rep` | `Bldgs, Units, Value` | 1-unit reported (not imputed) |
| 21-23 | `2-units rep` | `Bldgs, Units, Value` | 2-unit reported |
| 24-26 | `3-4 units rep` | `Bldgs, Units, Value` | 3-4 unit reported |
| 27-29 | `5+ units rep` | `Bldgs, Units, Value` | 5+ unit reported |

The first set (columns 6-17) includes **estimates with imputation** for non-responding permit offices. The second set (columns 18-29, "rep") contains only **reported data** (no imputation).

**Valuation** is in thousands of dollars.

#### B. Metro Files (1980 -- December 2023)

**Base URL:** `https://www2.census.gov/econ/bps/Metro%20(ending%202023)/`

| File Type | URL Pattern | Example |
|-----------|-------------|---------|
| Monthly (current month) | `maYYMMc.txt` | `ma2312c.txt` |
| Monthly (year-to-date) | `maYYMMy.txt` | `ma2312y.txt` |
| Annual | `maYYYYa.txt` | `ma2023a.txt` |

**Available range:**
- Annual files: `ma1980a.txt` through `ma2023a.txt` (44 years)
- Monthly files: `ma0001c.txt` (Jan 2000) through `ma2312c.txt` (Dec 2023)

**Row count:** ~384 rows (Metro areas only, no micropolitans).

**Columns (29 fields, same structure as CBSA but with different geographic ID headers):**

| Position | Header Row 1 | Header Row 2 | Description |
|----------|-------------|-------------|-------------|
| 1 | `Survey` | `Date` | Period: `YYYYMM` for monthly, `YYYY99`/`YY99` for annual |
| 2 | `MSA/` | `CMSA` | MSA or CMSA code (old 4-digit codes pre-2004; 5-digit CBSA codes post-2004) |
| 3 | `PMSA` | (blank) | PMSA code (pre-2004), or `9999` |
| 4 | (blank) | (blank) | Coverage flag: `C` = complete coverage; blank = sample-based |
| 5 | `MA` | `Name` | Metropolitan area name |
| 6-29 | (same as CBSA) | | Same 8 groups of Bldgs/Units/Value for 4 unit types x 2 (total + reported) |

**Note on geographic codes:** Files from 1980-2003 use old MSA/CMSA/PMSA codes (4-digit). Files from 2004 onward use CBSA codes (5-digit). The geographic universes changed in 2004 and 2014.

---

### 3. Secondary Data Source: Excel (XLS) Workbooks

#### A. CBSA Excel Files (January 2024 -- present)

**Monthly:**
- URL: `https://www.census.gov/construction/bps/xls/cbsamonthly_YYYYMM.xls`
- Example: `https://www.census.gov/construction/bps/xls/cbsamonthly_202401.xls`
- Size: ~400 KB
- **Two sheets:**
  - `CBSA Units` -- columns: CSA, CBSA, Name, Metro/Micro Code, Total, 1 Unit, 2 Units, 3-4 Units, 5+ Units, Num Structures 5+ (for current month AND year-to-date)
  - `CBSA Value` -- same layout but valuation in thousands of dollars

**Annual:**
- URL: `https://www.census.gov/construction/bps/xls/cbsaannual_YYYY99.xls`
- Example: `https://www.census.gov/construction/bps/xls/cbsaannual_202499.xls`
- Size: ~290 KB
- **Two sheets:** `CBSA Units Ann` and `CBSA Value Ann` with columns: CSA, CBSA, Name, Metro/Micro Code, Total, 1 Unit, 2 Units, 3-4 Units, 5+ Units, Num Structures 5+

#### B. MSA Excel Files (2019 -- 2023)

**Monthly:**
- URL: `https://www.census.gov/construction/bps/xls/msamonthly_YYYYMM.xls`

**Annual:**
- URL: `https://www.census.gov/construction/bps/xls/msaannual_YYYY99.xls`
- Available for 2019, 2020, 2021

#### C. Historical MSA Text Files on the main census.gov server (2004-2018)

Referenced from the `msaannual.html` page:
- Housing Units: `https://www.census.gov/construction/bps/txt/tb3u{YYYY}.txt`
- Valuation: `https://www.census.gov/construction/bps/txt/tb3v{YYYY}.txt`
- Available for 2004-2018

---

### 4. Summary of Coverage

| Period | Source | File Prefix | Geographic Unit | Format |
|--------|--------|------------|-----------------|--------|
| 1980-1999 | census2 server | `maYYYYa.txt` | MSA (old codes) | Annual only, CSV |
| 2000-2003 | census2 server | `maYYMMc.txt` / `maYYYYa.txt` | MSA (old codes) | Monthly + Annual, CSV |
| 2004-2018 | census2 server + census.gov | `maYYMMc.txt` / `maYYYYa.txt` + `tb3u/tb3v` | MSA (CBSA codes) | Monthly + Annual, CSV + TXT |
| 2019-2023 | census2 server + census.gov | `maYYMMc.txt` / `maYYYYa.txt` + XLS | MSA (CBSA codes) | Monthly + Annual, CSV + XLS |
| 2024-present | census2 server + census.gov | `cbsaYYMMc.txt` / `cbsaYYYYa.txt` + XLS | CBSA (Metro+Micro) | Monthly + Annual, CSV + XLS |

---

### 5. Key Data Fields Explained

- **Units authorized by permit** -- the count of new housing units for which permits were issued
- **Valuation** -- the estimated cost of construction as reported on the permit application (in thousands of dollars)
- **Buildings** -- the number of building structures (a 10-unit apartment building = 1 building, 10 units)
- **Unit type breakdown:** 1-unit (single-family), 2-unit (duplex), 3-4 unit, 5+ unit (multifamily)
- **"rep" columns** -- reported data only (no imputation for non-responding offices)
- **"total" columns** -- includes statistical imputation for non-responding jurisdictions
- **Metro/Micro Code:** `2` = Metropolitan Statistical Area (population >= 50,000), `5` = Micropolitan Statistical Area (population 10,000-49,999)

---

### 6. Recommended Download Strategy

For the most complete, machine-readable MSA/CBSA time series:

1. **Annual data 1980-2023:** Download all `maYYYYa.txt` files from `https://www2.census.gov/econ/bps/Metro%20(ending%202023)/`
2. **Annual data 2024+:** Download `cbsaYYYYa.txt` from `https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/`
3. **Monthly data 2000-2023:** Download `maYYMMc.txt` files from the Metro directory
4. **Monthly data 2024+:** Download `cbsaYYMMc.txt` files from the CBSA directory

All files are comma-delimited with a 2-row header. The column structure is consistent across the entire time series (29 columns), though the geographic code system changed in 2004 (from old MSA/CMSA/PMSA codes to modern 5-digit CBSA codes).
agentId: a3852b2 (for resuming to continue this agent's work if needed)
<usage>total_tokens: 42793
tool_uses: 41
duration_ms: 501531</usage>
Task
Explore FHFA HPI data
{
  "prompt": "I need to explore the FHFA House Price Index data. Please:\n\n1. Fetch https://www.fhfa.gov/data/hpi and understand what data files are available\n2. Also check https://www.fhfa.gov/hpi/download for downloadable files\n3. Look specifically for MSA/CBSA level data - the FHFA publishes MSA-level HPI data\n4. Find the actual downloadable data file URLs (CSV, XLS formats)\n5. Understand the data structure - what columns are available, what time periods\n\nCommon FHFA HPI download URLs include patterns like:\n- https://www.fhfa.gov/DataTools/Downloads/Documents/HPI/HPI_AT_metro.csv  \n- https://www.fhfa.gov/hpi/download (main download page)\n\nReport back: the exact URLs for downloading MSA/CBSA level HPI data, the file formats, column structure, and historical coverage period.",
  "subagent_type": "general-purpose"
}
---

## FHFA House Price Index -- MSA/CBSA Data: Complete Report

### Main Data Portal

The FHFA HPI data is organized at: **https://www.fhfa.gov/data/hpi/datasets**

---

### MSA/CBSA-Level Downloadable Files

There are **four** MSA/metro-level datasets, plus one annual CBSA file:

---

#### 1. All-Transactions Index -- Metropolitan Statistical Areas (broadest coverage)

| Format | URL |
|--------|-----|
| CSV | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv` |
| TXT | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.txt` |
| XLSX | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.xlsx` |

**Structure (CSV -- no header row):**

| Column | Content | Example |
|--------|---------|---------|
| 0 | Metro name (quoted) | `"Houston-Pasadena-The Woodlands, TX"` |
| 1 | CBSA code (5-digit) | `26420` |
| 2 | Year | `2025` |
| 3 | Quarter (1-4) | `3` |
| 4 | Index value (NSA) | `408.65` or `-` if unavailable |
| 5 | Standard error (in parens) | `( 2.57)` or `-` |

- **Coverage:** 410 unique metro areas/divisions, 83,230 rows
- **Time period:** 1975 Q1 through 2025 Q3 (data starts at different times per metro; many have `-` before ~1986)
- **Base period:** 1995 Q1 = 100.00
- **Seasonality:** Not seasonally adjusted (NSA only)
- **Includes:** Both MSAs and Metropolitan Statistical Area Divisions (MSADs, marked with `(MSAD)`)

---

#### 2. Purchase-Only Index -- 100 Largest MSAs

| Format | URL |
|--------|-----|
| TXT | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_metro.txt` |
| XLSX | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_metro.xlsx` |

**Structure (TXT -- tab-delimited with header):**

| Column | Header | Example |
|--------|--------|---------|
| 0 | `cbsa` | `10580` |
| 1 | `metro_name` | `"Albany-Schenectady-Troy, NY"` |
| 2 | `yr` | `2025` |
| 3 | `qtr` | `3` |
| 4 | `index_nsa` | `409.05` |
| 5 | `index_sa` | `405.66` |

- **Coverage:** 100 largest metro areas, 13,900 data rows
- **Time period:** 1991 Q1 through 2025 Q3
- **Base period:** 1991 Q1 = 100.00
- **Seasonality:** Both NSA and seasonally adjusted (SA) columns
- **Note:** Uses only purchase transaction data (no refinance appraisals)

---

#### 3. Expanded-Data Index -- 50 Largest MSAs

| Format | URL |
|--------|-----|
| TXT | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_exp_metro.txt` |
| XLSX | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_exp_metro.xlsx` |

**Structure (TXT -- tab-delimited with header):**

| Column | Header | Example |
|--------|--------|---------|
| 0 | `city` | `11244` |
| 1 | `metro_name` | `"Anaheim-Santa Ana-Irvine, CA (MSAD)"` |
| 2 | `yr` | `2025` |
| 3 | `qtr` | `3` |
| 4 | `index_nsa` | `516.54` |
| 5 | `index_sa` | `339.40` |
| 6 | `note` | (usually empty) |

- **Coverage:** 50 largest metro areas, 6,950 data rows
- **Time period:** 1991 Q1 through 2025 Q3
- **Base period:** 1991 Q1 = 100.00
- **Seasonality:** Both NSA and SA columns
- **Note:** Combines Enterprise (Fannie Mae/Freddie Mac), FHA, and county recorder data for broader coverage

---

#### 4. Distress-Free Purchase-Only Index -- Select MSAs

| Format | URL |
|--------|-----|
| TXT | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_distressfree.txt` |
| XLSX | `https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_distressfree.xlsx` |

- Excludes distressed sales (foreclosures, short sales)
- Select metro areas only

---

#### 5. Annual CBSA Index (Developmental)

| Format | URL |
|--------|-----|
| XLSX | `https://www.fhfa.gov/hpi/download/annual/hpi_at_cbsa.xlsx` |

**Structure (XLSX with header row at row 6):**

| Column | Header | Example |
|--------|--------|---------|
| A | `CBSA` | `10180` |
| B | `Name` | `Abilene, TX` |
| C | `Year` | `2024` |
| D | `Annual Change (%)` | `6.59` |
| E | `HPI` | `106.59` (base=100 when first recorded) |
| F | `HPI with 1990 base` | `97.16` |
| G | `HPI with 2000 base` | `67.59` |

- **Coverage:** 972 unique CBSAs (by far the broadest geographic coverage), 42,674 data rows
- **Time period:** 1975 through 2024 (annual)
- **Note:** Marked as "developmental/experimental" by FHFA; includes non-CBSA state areas (state FIPS codes like `01` for Alabama non-CBSA areas)

---

### Key Differences Between Datasets

| Dataset | Metros | Period | Frequency | SA? | Base Year |
|---------|--------|--------|-----------|-----|-----------|
| All-Transactions | 410 | 1975-2025 | Quarterly | No | 1995 Q1 |
| Purchase-Only | 100 | 1991-2025 | Quarterly | Yes | 1991 Q1 |
| Expanded-Data | 50 | 1991-2025 | Quarterly | Yes | 1991 Q1 |
| Annual CBSA | 972 | 1975-2024 | Annual | No | Multiple |

### Recommendations for Use

- **For broadest MSA coverage with quarterly frequency:** Use `hpi_at_metro.csv` (410 metros, back to 1975)
- **For seasonally adjusted quarterly data:** Use `hpi_po_metro.txt` (100 metros) or `hpi_exp_metro.txt` (50 metros)
- **For the most CBSAs at annual frequency:** Use `hpi_at_cbsa.xlsx` (972 CBSAs, but developmental/experimental)
- **For matching to Census CBSA codes:** All files use standard CBSA/FIPS codes that correspond to OMB metropolitan statistical area delineations

### Other Geographic Levels Available

The FHFA also publishes HPI data at national, state, census division, county, 3-digit ZIP, 5-digit ZIP, and census tract levels -- all accessible from the same datasets page at `https://www.fhfa.gov/data/hpi/datasets`.
agentId: add85e2 (for resuming to continue this agent's work if needed)
<usage>total_tokens: 32727
tool_uses: 33
duration_ms: 222853</usage>
TaskUpdate
{
  "taskId": "1",
  "status": "completed"
}
Updated task #1 
TaskUpdate
{
  "taskId": "2",
  "status": "completed"
}
Updated task #2 

Excellent. I now have a clear picture of both data sources. Let me start downloading the data and building the database. First, let me check what tools are available in the working directory.

$ Bash
Check if DuckDB CLI is available
which duckdb && duckdb --version
/opt/homebrew/bin/duckdb
v1.1.2 f680b7d08f
$ Bash
Check Python and duckdb module availability
which python3 && python3 --version && python3 -c "import duckdb; print(duckdb.__version__)" 2>/dev/null || echo "duckdb python module not found"
/opt/homebrew/bin/python3
Python 3.13.7
duckdb python module not found
$ Bash
Check available Python packages
python3 -c "import pandas; print(pandas.__version__)" 2>/dev/null || echo "no pandas"; python3 -c "import openpyxl; print(openpyxl.__version__)" 2>/dev/null || echo "no openpyxl"; python3 -c "import requests; print(requests.__version__)" 2>/dev/null || echo "no requests"
no pandas
3.1.5
no requests
$ Bash
Check standard library availability
python3 -c "import urllib.request; print('urllib ok')" && python3 -c "import csv; print('csv ok')" && python3 -c "import json; print('json ok')"
urllib ok
csv ok
json ok
$ Bash
Install required Python packages
pip3 install duckdb pandas requests openpyxl --quiet 2>&1 | tail -5
    Read more about this behavior here: <https://peps.python.org/pep-0668/>

note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
hint: See PEP 668 for the detailed specification.
$ Bash
Install required Python packages with override
pip3 install duckdb pandas requests openpyxl --quiet --break-system-packages 2>&1 | tail -5
TaskUpdate
{
  "taskId": "3",
  "status": "in_progress"
}
Updated task #3 status

Now let me create the build script. I'll write a comprehensive Python script that downloads both datasets and loads them into DuckDB.

$ Bash
List current directory contents
ls /Users/psg24/repos/housing-supply/
housing.cast
$ Bash
Create data directories
mkdir -p /Users/psg24/repos/housing-supply/data/raw

Let me first test the Census data format with a sample download, then build the full pipeline.

$ Bash
Download sample Census annual file to check format
curl -s "https://www2.census.gov/econ/bps/Metro%20(ending%202023)/ma2023a.txt" | head -5
Survey,CSA,CBSA,MONCOV,CBSA,,1-unit,,,2-units,,,3-4 units,,,5+ units,,,1-unit rep,,,2-units rep,,,3-4 units rep,,,5+ units rep
Date,Code,Code,,Name,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,      Bldgs,Units,Value,Bldgs,Units,Value
 
202399,104,10580,C,Albany-Schenectady-Troy  NY ,976,976,350376,20,40,9007,14,55,9533,56,836,101530,843,843,296483,15,30,5877,14,55,9533,37,740,92645
202399,104,24020, ,Glens Falls  NY ,226,226,73485,1,2,346,1,4,630,1,6,850,223,223,72574,1,2,346,1,4,630,1,6,850
$ Bash
Check oldest annual file format
curl -s "https://www2.census.gov/econ/bps/Metro%20(ending%202023)/ma1980a.txt" | head -5
Survey,MSA/,PMSA,,MA,,1-unit,,,2-units,,,3-4 units,,,5+ units,,,1-unit rep,,,2-units rep,,,3-4 units rep,,,5+ units rep
Date,CMSA,,,Name,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value

8099,0040,9999, ,ABILENE SMSA,569,569,40702,7,14,542,5,20,555,2,352,5995,554,554,40144,7,14,542,5,20,555,2,352,5995
8099,0080,9999, ,AKRON SMSA,1053,1053,62926,73,146,4570,17,63,1531,96,1296,34693,1048,1048,62718,73,146,4570,15,57,1316,96,1296,34693
$ Bash
Check 2004 format (CBSA transition year)
curl -s "https://www2.census.gov/econ/bps/Metro%20(ending%202023)/ma2004a.txt" | head -5
Survey,CSA,CBSA,MONCOV,CBSA,,1-unit,,,2-units,,,3-4 units,,,5+ units,,,1-unit rep,,,2-units rep,,,3-4 units rep,,,5+ units rep
Date,Code,Code,,Name,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,      Bldgs,Units,Value,Bldgs,Units,Value
 
200499,102,18700, ,Corvallis  OR ,291,291,62810,3,6,730,0,0,0,9,69,5860,287,287,62317,3,6,730,0,0,0,9,69,5860
200499,104,10580, ,Albany-Schenectady-Troy  NY ,2608,2608,493350,21,42,4472,1,4,695,61,614,54101,2294,2294,456340,19,38,4206,1,4,695,33,403,41806
$ Bash
Check CBSA format (2024+)
curl -s "https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2024a.txt" | head -5
Survey,CSA,CBSA,HHEADER,CBSA,,1-unit,,,2-units,,,3-4 units,,,5+ units,,,1-unit rep,,,2-units rep,,,3-4 units rep,,,5+ units rep
Date,Code,Code,,Name,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,Bldgs,Units,Value,      Bldgs,Units,Value,Bldgs,Units,Value
 
202499,101,10180,2,Abilene  TX ,431,431,120144,48,96,14788,0,0,0,0,0,0,431,431,120144,48,96,14788,0,0,0,0,0,0
202499,101,45020,5,Sweetwater  TX ,19,19,3663,0,0,0,0,0,0,0,0,0,19,19,3663,0,0,0,0,0,0,0,0,0

Now let me also check the FHFA data format:

$ Bash
Check FHFA All-Transactions metro CSV format
curl -s "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv" | head -10
"Abilene, TX",10180,1975,1,-,-
"Abilene, TX",10180,1975,2,-,-
"Abilene, TX",10180,1975,3,-,-
"Abilene, TX",10180,1975,4,-,-
"Abilene, TX",10180,1976,1,-,-
"Abilene, TX",10180,1976,2,-,-
"Abilene, TX",10180,1976,3,-,-
"Abilene, TX",10180,1976,4,-,-
"Abilene, TX",10180,1977,1,-,-
"Abilene, TX",10180,1977,2,-,-
$ Bash
Count rows in FHFA metro CSV
curl -s "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv" | wc -l
   83230
$ Bash
Check end of FHFA CSV
curl -s "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv" | tail -5
"Yuma, AZ",49740,2024,3,331.48,( 6.37)
"Yuma, AZ",49740,2024,4,337.21,( 6.18)
"Yuma, AZ",49740,2025,1,327.02,( 6.73)
"Yuma, AZ",49740,2025,2,344.03,( 6.93)
"Yuma, AZ",49740,2025,3,337.06,( 6.69)

Now let me also check the purchase-only metro data:

$ Bash
Check FHFA purchase-only metro format
curl -s "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_metro.txt" | head -5
cbsa	metro_name	yr	qtr	index_nsa	index_sa
10580	"Albany-Schenectady-Troy, NY"	1991	1	100.00	100.00
10580	"Albany-Schenectady-Troy, NY"	1991	2	99.83	100.32
10580	"Albany-Schenectady-Troy, NY"	1991	3	100.19	100.43
10580	"Albany-Schenectady-Troy, NY"	1991	4	99.82	98.80

Good. Now I have a clear picture of all the formats. Let me write the comprehensive build script.

📝 Write build_db.py
/Users/psg24/repos/housing-supply/build_db.py
#!/usr/bin/env python3
"""
Build a DuckDB database combining:
1. Census Bureau Building Permits Survey (BPS) at MSA/CBSA level (1980-present)
2. FHFA House Price Index at MSA/CBSA level (1975-present)

Usage:
    python3 build_db.py
"""

import csv
import io
import os
import re
import sys
import time
import urllib.request
import urllib.error
import duckdb

DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data", "raw")
DB_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "housing_supply.duckdb")

# Census BPS URLs
CENSUS_METRO_BASE = "https://www2.census.gov/econ/bps/Metro%20(ending%202023)/"
CENSUS_CBSA_BASE = "https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/"

# FHFA HPI URLs
FHFA_AT_METRO_CSV = "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv"
FHFA_PO_METRO_TXT = "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_metro.txt"


def download(url, retries=3, delay=1.0):
    """Download a URL with retries, return bytes."""
    for attempt in range(retries):
        try:
            req = urllib.request.Request(url, headers={"User-Agent": "Mozilla/5.0 housing-supply-research"})
            with urllib.request.urlopen(req, timeout=60) as resp:
                return resp.read()
        except (urllib.error.URLError, urllib.error.HTTPError, TimeoutError) as e:
            if attempt < retries - 1:
                print(f"  Retry {attempt+1}/{retries} for {url}: {e}")
                time.sleep(delay * (attempt + 1))
            else:
                print(f"  FAILED: {url}: {e}")
                return None


def download_cached(url, filename):
    """Download to cache file if not already present."""
    path = os.path.join(DATA_DIR, filename)
    if os.path.exists(path) and os.path.getsize(path) > 0:
        return path
    data = download(url)
    if data is None:
        return None
    with open(path, "wb") as f:
        f.write(data)
    return path


# ---------------------------------------------------------------------------
# Census BPS Parsing
# ---------------------------------------------------------------------------

def parse_bps_annual_file(raw_bytes, year):
    """Parse a Census BPS annual text file into a list of row dicts.

    Handles both old MSA format (1980-2003) and new CBSA format (2004+).
    """
    text = raw_bytes.decode("latin-1")
    lines = text.strip().split("\n")

    rows = []
    for line in lines[2:]:  # Skip 2 header rows
        line = line.strip()
        if not line:
            continue

        # Parse CSV - handle potential issues
        parts = list(csv.reader([line]))[0]
        if len(parts) < 29:
            continue

        # Determine format based on year
        survey_date = parts[0].strip()

        if year < 2004:
            # Old MSA format: MSA/CMSA, PMSA, coverage_flag, name
            msa_code = parts[1].strip()
            pmsa_code = parts[2].strip()
            geo_name = parts[4].strip()

            # Use PMSA if it's not 9999, otherwise use MSA code
            if pmsa_code and pmsa_code != "9999":
                geo_code = pmsa_code
            else:
                geo_code = msa_code

            cbsa_code = None  # Old codes don't map to CBSA
            csa_code = None
            metro_micro = "2"  # All are metro in old format
        elif year < 2024:
            # CBSA format 2004-2023: CSA, CBSA, MONCOV, name
            csa_code = parts[1].strip() or None
            cbsa_code = parts[2].strip()
            geo_code = cbsa_code
            geo_name = parts[4].strip()
            metro_micro = "2"  # All metro pre-2024
        else:
            # CBSA format 2024+: CSA, CBSA, HHEADER, name
            csa_code = parts[1].strip() or None
            cbsa_code = parts[2].strip()
            geo_code = cbsa_code
            metro_micro = parts[3].strip()  # 2=metro, 5=micro
            geo_name = parts[4].strip()

        def safe_int(s):
            s = s.strip()
            if not s or s == '-':
                return 0
            return int(s)

        row = {
            "year": year,
            "geo_code": geo_code,
            "cbsa_code": cbsa_code,
            "csa_code": csa_code,
            "geo_name": geo_name,
            "metro_micro": metro_micro,
            "units_1": safe_int(parts[6]),
            "units_2": safe_int(parts[9]),
            "units_3_4": safe_int(parts[12]),
            "units_5plus": safe_int(parts[15]),
            "bldgs_1": safe_int(parts[5]),
            "bldgs_2": safe_int(parts[8]),
            "bldgs_3_4": safe_int(parts[11]),
            "bldgs_5plus": safe_int(parts[14]),
            "value_1": safe_int(parts[7]),
            "value_2": safe_int(parts[10]),
            "value_3_4": safe_int(parts[13]),
            "value_5plus": safe_int(parts[16]),
        }
        row["units_total"] = row["units_1"] + row["units_2"] + row["units_3_4"] + row["units_5plus"]
        row["bldgs_total"] = row["bldgs_1"] + row["bldgs_2"] + row["bldgs_3_4"] + row["bldgs_5plus"]
        row["value_total"] = row["value_1"] + row["value_2"] + row["value_3_4"] + row["value_5plus"]

        rows.append(row)

    return rows


def parse_bps_monthly_file(raw_bytes, year, month):
    """Parse a Census BPS monthly text file into a list of row dicts."""
    text = raw_bytes.decode("latin-1")
    lines = text.strip().split("\n")

    rows = []
    for line in lines[2:]:
        line = line.strip()
        if not line:
            continue

        parts = list(csv.reader([line]))[0]
        if len(parts) < 29:
            continue

        if year < 2004:
            msa_code = parts[1].strip()
            pmsa_code = parts[2].strip()
            geo_name = parts[4].strip()
            if pmsa_code and pmsa_code != "9999":
                geo_code = pmsa_code
            else:
                geo_code = msa_code
            cbsa_code = None
            csa_code = None
            metro_micro = "2"
        elif year < 2024:
            csa_code = parts[1].strip() or None
            cbsa_code = parts[2].strip()
            geo_code = cbsa_code
            geo_name = parts[4].strip()
            metro_micro = "2"
        else:
            csa_code = parts[1].strip() or None
            cbsa_code = parts[2].strip()
            geo_code = cbsa_code
            metro_micro = parts[3].strip()
            geo_name = parts[4].strip()

        def safe_int(s):
            s = s.strip()
            if not s or s == '-':
                return 0
            return int(s)

        row = {
            "year": year,
            "month": month,
            "geo_code": geo_code,
            "cbsa_code": cbsa_code,
            "csa_code": csa_code,
            "geo_name": geo_name,
            "metro_micro": metro_micro,
            "units_1": safe_int(parts[6]),
            "units_2": safe_int(parts[9]),
            "units_3_4": safe_int(parts[12]),
            "units_5plus": safe_int(parts[15]),
            "bldgs_1": safe_int(parts[5]),
            "bldgs_2": safe_int(parts[8]),
            "bldgs_3_4": safe_int(parts[11]),
            "bldgs_5plus": safe_int(parts[14]),
            "value_1": safe_int(parts[7]),
            "value_2": safe_int(parts[10]),
            "value_3_4": safe_int(parts[13]),
            "value_5plus": safe_int(parts[16]),
        }
        row["units_total"] = row["units_1"] + row["units_2"] + row["units_3_4"] + row["units_5plus"]
        row["bldgs_total"] = row["bldgs_1"] + row["bldgs_2"] + row["bldgs_3_4"] + row["bldgs_5plus"]
        row["value_total"] = row["value_1"] + row["value_2"] + row["value_3_4"] + row["value_5plus"]

        rows.append(row)

    return rows


def download_all_bps_annual():
    """Download all annual BPS files from 1980 to present."""
    all_rows = []
    current_year = 2026

    # 1980-2023: Metro files
    for year in range(1980, 2024):
        filename = f"ma{year}a.txt"
        url = CENSUS_METRO_BASE + filename
        print(f"  Downloading BPS annual {year}...")
        data = download_cached(url, f"bps_annual_{year}.txt")
        if data:
            with open(data, "rb") as f:
                raw = f.read()
            rows = parse_bps_annual_file(raw, year)
            all_rows.extend(rows)
            print(f"    -> {len(rows)} MSAs")

    # 2024+: CBSA files
    for year in range(2024, current_year):
        filename = f"cbsa{year}a.txt"
        url = CENSUS_CBSA_BASE + filename
        print(f"  Downloading BPS annual {year} (CBSA)...")
        data = download_cached(url, f"bps_annual_{year}.txt")
        if data:
            with open(data, "rb") as f:
                raw = f.read()
            rows = parse_bps_annual_file(raw, year)
            all_rows.extend(rows)
            print(f"    -> {len(rows)} CBSAs")

    return all_rows


def download_all_bps_monthly():
    """Download all monthly BPS files from 2000 to present."""
    all_rows = []
    current_year = 2026
    current_month = 2  # February 2026

    # 2000-2023: Metro monthly files
    for year in range(2000, 2024):
        for month in range(1, 13):
            yy = f"{year % 100:02d}"
            mm = f"{month:02d}"
            filename = f"ma{yy}{mm}c.txt"
            url = CENSUS_METRO_BASE + filename
            cache_name = f"bps_monthly_{year}_{mm}.txt"

            data = download_cached(url, cache_name)
            if data:
                with open(data, "rb") as f:
                    raw = f.read()
                rows = parse_bps_monthly_file(raw, year, month)
                all_rows.extend(rows)
        print(f"  Downloaded BPS monthly {year}: {len([r for r in all_rows if r['year']==year])} records")

    # 2024+: CBSA monthly files
    for year in range(2024, current_year + 1):
        end_month = current_month if year == current_year else 12
        for month in range(1, end_month + 1):
            yy = f"{year % 100:02d}"
            mm = f"{month:02d}"
            filename = f"cbsa{yy}{mm}c.txt"
            url = CENSUS_CBSA_BASE + filename
            cache_name = f"bps_monthly_{year}_{mm}.txt"

            data = download_cached(url, cache_name)
            if data:
                with open(data, "rb") as f:
                    raw = f.read()
                rows = parse_bps_monthly_file(raw, year, month)
                all_rows.extend(rows)
        yr_count = len([r for r in all_rows if r['year'] == year])
        if yr_count:
            print(f"  Downloaded BPS monthly {year}: {yr_count} records")

    return all_rows


# ---------------------------------------------------------------------------
# FHFA HPI Parsing
# ---------------------------------------------------------------------------

def download_fhfa_all_transactions():
    """Download and parse FHFA All-Transactions HPI at metro level."""
    print("  Downloading FHFA All-Transactions HPI (metro)...")
    path = download_cached(FHFA_AT_METRO_CSV, "fhfa_hpi_at_metro.csv")
    if not path:
        return []

    rows = []
    with open(path, "r") as f:
        reader = csv.reader(f)
        for parts in reader:
            if len(parts) < 5:
                continue

            metro_name = parts[0].strip().strip('"')
            cbsa_code = parts[1].strip()
            year_str = parts[2].strip()
            qtr_str = parts[3].strip()
            index_val = parts[4].strip()
            std_err = parts[5].strip() if len(parts) > 5 else None

            if not year_str.isdigit():
                continue

            hpi = None
            if index_val and index_val != "-":
                try:
                    hpi = float(index_val)
                except ValueError:
                    pass

            se = None
            if std_err and std_err != "-":
                # Remove parentheses
                se_clean = std_err.replace("(", "").replace(")", "").strip()
                try:
                    se = float(se_clean)
                except ValueError:
                    pass

            rows.append({
                "metro_name": metro_name,
                "cbsa_code": cbsa_code,
                "year": int(year_str),
                "quarter": int(qtr_str),
                "hpi_at_nsa": hpi,
                "hpi_at_se": se,
            })

    return rows


def download_fhfa_purchase_only():
    """Download and parse FHFA Purchase-Only HPI (100 largest metros)."""
    print("  Downloading FHFA Purchase-Only HPI (100 largest metros)...")
    path = download_cached(FHFA_PO_METRO_TXT, "fhfa_hpi_po_metro.txt")
    if not path:
        return []

    rows = []
    with open(path, "r") as f:
        reader = csv.reader(f, delimiter="\t")
        header = next(reader, None)  # Skip header
        for parts in reader:
            if len(parts) < 6:
                continue

            cbsa_code = parts[0].strip()
            metro_name = parts[1].strip().strip('"')
            year_str = parts[2].strip()
            qtr_str = parts[3].strip()
            nsa_str = parts[4].strip()
            sa_str = parts[5].strip()

            if not year_str.isdigit():
                continue

            nsa = float(nsa_str) if nsa_str and nsa_str != "." else None
            sa = float(sa_str) if sa_str and sa_str != "." else None

            rows.append({
                "metro_name": metro_name,
                "cbsa_code": cbsa_code,
                "year": int(year_str),
                "quarter": int(qtr_str),
                "hpi_po_nsa": nsa,
                "hpi_po_sa": sa,
            })

    return rows


# ---------------------------------------------------------------------------
# DuckDB Database Creation
# ---------------------------------------------------------------------------

def build_database(bps_annual, bps_monthly, fhfa_at, fhfa_po):
    """Create the DuckDB database with all tables."""

    # Remove existing DB
    if os.path.exists(DB_PATH):
        os.remove(DB_PATH)

    con = duckdb.connect(DB_PATH)

    # ---- BPS Annual Table ----
    print("\nCreating building_permits_annual table...")
    con.execute("""
        CREATE TABLE building_permits_annual (
            year INTEGER NOT NULL,
            geo_code VARCHAR NOT NULL,
            cbsa_code VARCHAR,
            csa_code VARCHAR,
            geo_name VARCHAR,
            metro_micro VARCHAR,
            units_total INTEGER,
            units_1 INTEGER,
            units_2 INTEGER,
            units_3_4 INTEGER,
            units_5plus INTEGER,
            bldgs_total INTEGER,
            bldgs_1 INTEGER,
            bldgs_2 INTEGER,
            bldgs_3_4 INTEGER,
            bldgs_5plus INTEGER,
            value_total BIGINT,
            value_1 BIGINT,
            value_2 BIGINT,
            value_3_4 BIGINT,
            value_5plus BIGINT,
            PRIMARY KEY (year, geo_code)
        )
    """)

    if bps_annual:
        con.executemany("""
            INSERT INTO building_permits_annual VALUES (
                ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
            )
        """, [(
            r["year"], r["geo_code"], r.get("cbsa_code"), r.get("csa_code"),
            r["geo_name"], r.get("metro_micro", "2"),
            r["units_total"], r["units_1"], r["units_2"], r["units_3_4"], r["units_5plus"],
            r["bldgs_total"], r["bldgs_1"], r["bldgs_2"], r["bldgs_3_4"], r["bldgs_5plus"],
            r["value_total"], r["value_1"], r["value_2"], r["value_3_4"], r["value_5plus"],
        ) for r in bps_annual])

    count = con.execute("SELECT COUNT(*) FROM building_permits_annual").fetchone()[0]
    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM building_permits_annual").fetchone()
    print(f"  -> {count:,} rows, {yr_range[0]}-{yr_range[1]}")

    # ---- BPS Monthly Table ----
    print("Creating building_permits_monthly table...")
    con.execute("""
        CREATE TABLE building_permits_monthly (
            year INTEGER NOT NULL,
            month INTEGER NOT NULL,
            geo_code VARCHAR NOT NULL,
            cbsa_code VARCHAR,
            csa_code VARCHAR,
            geo_name VARCHAR,
            metro_micro VARCHAR,
            units_total INTEGER,
            units_1 INTEGER,
            units_2 INTEGER,
            units_3_4 INTEGER,
            units_5plus INTEGER,
            bldgs_total INTEGER,
            bldgs_1 INTEGER,
            bldgs_2 INTEGER,
            bldgs_3_4 INTEGER,
            bldgs_5plus INTEGER,
            value_total BIGINT,
            value_1 BIGINT,
            value_2 BIGINT,
            value_3_4 BIGINT,
            value_5plus BIGINT,
            PRIMARY KEY (year, month, geo_code)
        )
    """)

    if bps_monthly:
        con.executemany("""
            INSERT INTO building_permits_monthly VALUES (
                ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
            )
        """, [(
            r["year"], r["month"], r["geo_code"], r.get("cbsa_code"), r.get("csa_code"),
            r["geo_name"], r.get("metro_micro", "2"),
            r["units_total"], r["units_1"], r["units_2"], r["units_3_4"], r["units_5plus"],
            r["bldgs_total"], r["bldgs_1"], r["bldgs_2"], r["bldgs_3_4"], r["bldgs_5plus"],
            r["value_total"], r["value_1"], r["value_2"], r["value_3_4"], r["value_5plus"],
        ) for r in bps_monthly])

    count = con.execute("SELECT COUNT(*) FROM building_permits_monthly").fetchone()[0]
    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM building_permits_monthly").fetchone()
    print(f"  -> {count:,} rows, {yr_range[0]}-{yr_range[1]}")

    # ---- FHFA All-Transactions Table ----
    print("Creating fhfa_hpi_all_transactions table...")
    con.execute("""
        CREATE TABLE fhfa_hpi_all_transactions (
            cbsa_code VARCHAR NOT NULL,
            metro_name VARCHAR,
            year INTEGER NOT NULL,
            quarter INTEGER NOT NULL,
            hpi_at_nsa DOUBLE,
            hpi_at_se DOUBLE,
            PRIMARY KEY (cbsa_code, year, quarter)
        )
    """)

    if fhfa_at:
        con.executemany("""
            INSERT INTO fhfa_hpi_all_transactions VALUES (?, ?, ?, ?, ?, ?)
        """, [(
            r["cbsa_code"], r["metro_name"], r["year"], r["quarter"],
            r["hpi_at_nsa"], r["hpi_at_se"],
        ) for r in fhfa_at])

    count = con.execute("SELECT COUNT(*) FROM fhfa_hpi_all_transactions").fetchone()[0]
    non_null = con.execute("SELECT COUNT(*) FROM fhfa_hpi_all_transactions WHERE hpi_at_nsa IS NOT NULL").fetchone()[0]
    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM fhfa_hpi_all_transactions WHERE hpi_at_nsa IS NOT NULL").fetchone()
    metros = con.execute("SELECT COUNT(DISTINCT cbsa_code) FROM fhfa_hpi_all_transactions").fetchone()[0]
    print(f"  -> {count:,} rows ({non_null:,} with data), {metros} metros, {yr_range[0]}-{yr_range[1]}")

    # ---- FHFA Purchase-Only Table ----
    print("Creating fhfa_hpi_purchase_only table...")
    con.execute("""
        CREATE TABLE fhfa_hpi_purchase_only (
            cbsa_code VARCHAR NOT NULL,
            metro_name VARCHAR,
            year INTEGER NOT NULL,
            quarter INTEGER NOT NULL,
            hpi_po_nsa DOUBLE,
            hpi_po_sa DOUBLE,
            PRIMARY KEY (cbsa_code, year, quarter)
        )
    """)

    if fhfa_po:
        con.executemany("""
            INSERT INTO fhfa_hpi_purchase_only VALUES (?, ?, ?, ?, ?, ?)
        """, [(
            r["cbsa_code"], r["metro_name"], r["year"], r["quarter"],
            r["hpi_po_nsa"], r["hpi_po_sa"],
        ) for r in fhfa_po])

    count = con.execute("SELECT COUNT(*) FROM fhfa_hpi_purchase_only").fetchone()[0]
    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM fhfa_hpi_purchase_only").fetchone()
    metros = con.execute("SELECT COUNT(DISTINCT cbsa_code) FROM fhfa_hpi_purchase_only").fetchone()[0]
    print(f"  -> {count:,} rows, {metros} metros, {yr_range[0]}-{yr_range[1]}")

    # ---- Create useful views ----
    print("\nCreating views...")

    # Annual permits + annual average HPI (for CBSAs that have CBSA codes, 2004+)
    con.execute("""
        CREATE VIEW permits_with_hpi_annual AS
        SELECT
            bp.year,
            bp.geo_code,
            bp.cbsa_code,
            bp.geo_name,
            bp.metro_micro,
            bp.units_total,
            bp.units_1,
            bp.units_2,
            bp.units_3_4,
            bp.units_5plus,
            bp.bldgs_total,
            bp.value_total,
            hpi.avg_hpi_at_nsa,
            hpi.avg_hpi_po_nsa,
            hpi.avg_hpi_po_sa
        FROM building_permits_annual bp
        LEFT JOIN (
            SELECT
                at_q.cbsa_code,
                at_q.year,
                AVG(at_q.hpi_at_nsa) AS avg_hpi_at_nsa,
                AVG(po_q.hpi_po_nsa) AS avg_hpi_po_nsa,
                AVG(po_q.hpi_po_sa) AS avg_hpi_po_sa
            FROM fhfa_hpi_all_transactions at_q
            LEFT JOIN fhfa_hpi_purchase_only po_q
                ON at_q.cbsa_code = po_q.cbsa_code
                AND at_q.year = po_q.year
                AND at_q.quarter = po_q.quarter
            WHERE at_q.hpi_at_nsa IS NOT NULL
            GROUP BY at_q.cbsa_code, at_q.year
        ) hpi
            ON bp.cbsa_code = hpi.cbsa_code
            AND bp.year = hpi.year
    """)
    print("  -> permits_with_hpi_annual view created")

    # Quarterly permits (aggregated from monthly) + quarterly HPI
    con.execute("""
        CREATE VIEW permits_with_hpi_quarterly AS
        SELECT
            bp.year,
            bp.quarter,
            bp.cbsa_code,
            bp.geo_name,
            bp.metro_micro,
            bp.units_total,
            bp.units_1,
            bp.units_5plus,
            bp.value_total,
            at_q.hpi_at_nsa,
            po_q.hpi_po_nsa,
            po_q.hpi_po_sa
        FROM (
            SELECT
                year,
                CASE
                    WHEN month <= 3 THEN 1
                    WHEN month <= 6 THEN 2
                    WHEN month <= 9 THEN 3
                    ELSE 4
                END AS quarter,
                geo_code,
                cbsa_code,
                geo_name,
                metro_micro,
                SUM(units_total) AS units_total,
                SUM(units_1) AS units_1,
                SUM(units_5plus) AS units_5plus,
                SUM(value_total) AS value_total
            FROM building_permits_monthly
            GROUP BY year, quarter, geo_code, cbsa_code, geo_name, metro_micro
        ) bp
        LEFT JOIN fhfa_hpi_all_transactions at_q
            ON bp.cbsa_code = at_q.cbsa_code
            AND bp.year = at_q.year
            AND bp.quarter = at_q.quarter
        LEFT JOIN fhfa_hpi_purchase_only po_q
            ON bp.cbsa_code = po_q.cbsa_code
            AND bp.year = po_q.year
            AND bp.quarter = po_q.quarter
    """)
    print("  -> permits_with_hpi_quarterly view created")

    # Summary stats
    print("\n" + "=" * 60)
    print("DATABASE SUMMARY")
    print("=" * 60)

    tables = con.execute("""
        SELECT table_name FROM information_schema.tables
        WHERE table_schema = 'main' AND table_type = 'BASE TABLE'
        ORDER BY table_name
    """).fetchall()

    for (tbl,) in tables:
        cnt = con.execute(f"SELECT COUNT(*) FROM {tbl}").fetchone()[0]
        cols = con.execute(f"SELECT COUNT(*) FROM information_schema.columns WHERE table_name = '{tbl}'").fetchone()[0]
        print(f"\n  {tbl}: {cnt:,} rows, {cols} columns")
        # Show year range
        try:
            yr = con.execute(f"SELECT MIN(year), MAX(year) FROM {tbl}").fetchone()
            print(f"    Year range: {yr[0]}-{yr[1]}")
        except:
            pass

    views = con.execute("""
        SELECT table_name FROM information_schema.tables
        WHERE table_schema = 'main' AND table_type = 'VIEW'
        ORDER BY table_name
    """).fetchall()

    for (v,) in views:
        cnt = con.execute(f"SELECT COUNT(*) FROM {v}").fetchone()[0]
        print(f"\n  VIEW {v}: {cnt:,} rows")

    con.close()
    print(f"\nDatabase written to: {DB_PATH}")
    print(f"Database size: {os.path.getsize(DB_PATH) / 1024 / 1024:.1f} MB")


def main():
    os.makedirs(DATA_DIR, exist_ok=True)

    print("=" * 60)
    print("HOUSING SUPPLY DATABASE BUILDER")
    print("=" * 60)

    # 1. Download Census BPS Annual
    print("\n[1/4] Downloading Census Building Permits - Annual (1980-present)...")
    bps_annual = download_all_bps_annual()
    print(f"  Total annual records: {len(bps_annual):,}")

    # 2. Download Census BPS Monthly
    print("\n[2/4] Downloading Census Building Permits - Monthly (2000-present)...")
    bps_monthly = download_all_bps_monthly()
    print(f"  Total monthly records: {len(bps_monthly):,}")

    # 3. Download FHFA HPI
    print("\n[3/4] Downloading FHFA HPI - All Transactions...")
    fhfa_at = download_fhfa_all_transactions()
    print(f"  Total FHFA AT records: {len(fhfa_at):,}")

    print("\n[4/4] Downloading FHFA HPI - Purchase Only...")
    fhfa_po = download_fhfa_purchase_only()
    print(f"  Total FHFA PO records: {len(fhfa_po):,}")

    # 4. Build database
    print("\n" + "=" * 60)
    print("BUILDING DUCKDB DATABASE")
    print("=" * 60)
    build_database(bps_annual, bps_monthly, fhfa_at, fhfa_po)


if __name__ == "__main__":
    main()
File created successfully at: /Users/psg24/repos/housing-supply/build_db.py

Now let me run the script. This will take a few minutes as it downloads ~350+ files from Census and FHFA.

$ Bash
Run the database build script
python3 build_db.py 2>&1
============================================================
HOUSING SUPPLY DATABASE BUILDER
============================================================

[1/4] Downloading Census Building Permits - Annual (1980-present)...
  Downloading BPS annual 1980...
    -> 284 MSAs
  Downloading BPS annual 1981...
    -> 318 MSAs
  Downloading BPS annual 1982...
    -> 318 MSAs
  Downloading BPS annual 1983...
    -> 318 MSAs
  Downloading BPS annual 1984...
    -> 328 MSAs
  Downloading BPS annual 1985...
    -> 352 MSAs
  Downloading BPS annual 1986...
    -> 352 MSAs
  Downloading BPS annual 1987...
    -> 352 MSAs
  Downloading BPS annual 1988...
    -> 353 MSAs
  Downloading BPS annual 1989...
    -> 354 MSAs
  Downloading BPS annual 1990...
    -> 355 MSAs
  Downloading BPS annual 1991...
    -> 355 MSAs
  Downloading BPS annual 1992...
    -> 355 MSAs
  Downloading BPS annual 1993...
    -> 341 MSAs
  Downloading BPS annual 1994...
    -> 342 MSAs
  Downloading BPS annual 1995...
    -> 344 MSAs
  Downloading BPS annual 1996...
    -> 346 MSAs
  Downloading BPS annual 1997...
    -> 346 MSAs
  Downloading BPS annual 1998...
    -> 348 MSAs
  Downloading BPS annual 1999...
    -> 349 MSAs
  Downloading BPS annual 2000...
    -> 349 MSAs
  Downloading BPS annual 2001...
    -> 349 MSAs
  Downloading BPS annual 2002...
    -> 349 MSAs
  Downloading BPS annual 2003...
    -> 361 MSAs
  Downloading BPS annual 2004...
    -> 361 MSAs
  Downloading BPS annual 2005...
    -> 361 MSAs
  Downloading BPS annual 2006...
    -> 361 MSAs
  Downloading BPS annual 2007...
    -> 363 MSAs
  Downloading BPS annual 2008...
    -> 363 MSAs
  Downloading BPS annual 2009...
    -> 366 MSAs
  Downloading BPS annual 2010...
    -> 366 MSAs
  Downloading BPS annual 2011...
    -> 366 MSAs
  Downloading BPS annual 2012...
    -> 366 MSAs
  Downloading BPS annual 2013...
    -> 366 MSAs
  Downloading BPS annual 2014...
    -> 381 MSAs
  Downloading BPS annual 2015...
    -> 381 MSAs
  Downloading BPS annual 2016...
    -> 382 MSAs
  Downloading BPS annual 2017...
    -> 382 MSAs
  Downloading BPS annual 2018...
    -> 382 MSAs
  Downloading BPS annual 2019...
    -> 384 MSAs
  Downloading BPS annual 2020...
    -> 384 MSAs
  Downloading BPS annual 2021...
    -> 384 MSAs
  Downloading BPS annual 2022...
    -> 384 MSAs
  Downloading BPS annual 2023...
    -> 384 MSAs
  Downloading BPS annual 2024 (CBSA)...
    -> 921 CBSAs
  Downloading BPS annual 2025 (CBSA)...
  Retry 1/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2025a.txt: HTTP Error 404: Not Found
  Retry 2/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2025a.txt: HTTP Error 404: Not Found
  FAILED: https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2025a.txt: HTTP Error 404: Not Found
  Total annual records: 16,606

[2/4] Downloading Census Building Permits - Monthly (2000-present)...
  Downloaded BPS monthly 2000: 4170 records
  Downloaded BPS monthly 2001: 4176 records
  Downloaded BPS monthly 2002: 4176 records
  Downloaded BPS monthly 2003: 4176 records
  Downloaded BPS monthly 2004: 4332 records
  Downloaded BPS monthly 2005: 4320 records
  Downloaded BPS monthly 2006: 4320 records
  Downloaded BPS monthly 2007: 4344 records
  Downloaded BPS monthly 2008: 4344 records
  Downloaded BPS monthly 2009: 4015 records
  Downloaded BPS monthly 2010: 4380 records
  Downloaded BPS monthly 2011: 4380 records
  Downloaded BPS monthly 2012: 4380 records
  Downloaded BPS monthly 2013: 4380 records
  Downloaded BPS monthly 2014: 4560 records
  Downloaded BPS monthly 2015: 4380 records
  Downloaded BPS monthly 2016: 4392 records
  Downloaded BPS monthly 2017: 4392 records
  Downloaded BPS monthly 2018: 4404 records
  Downloaded BPS monthly 2019: 4416 records
  Downloaded BPS monthly 2020: 4416 records
  Downloaded BPS monthly 2021: 4048 records
  Downloaded BPS monthly 2022: 4608 records
  Downloaded BPS monthly 2023: 4608 records
  Downloaded BPS monthly 2024: 11052 records
  Retry 1/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2511c.txt: HTTP Error 404: Not Found
  Retry 2/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2511c.txt: HTTP Error 404: Not Found
  FAILED: https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2511c.txt: HTTP Error 404: Not Found
  Retry 1/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2512c.txt: HTTP Error 404: Not Found
  Retry 2/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2512c.txt: HTTP Error 404: Not Found
  FAILED: https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2512c.txt: HTTP Error 404: Not Found
  Downloaded BPS monthly 2025: 9210 records
  Retry 1/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2601c.txt: HTTP Error 404: Not Found
  Retry 2/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2601c.txt: HTTP Error 404: Not Found
  FAILED: https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2601c.txt: HTTP Error 404: Not Found
  Retry 1/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2602c.txt: HTTP Error 404: Not Found
  Retry 2/3 for https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2602c.txt: HTTP Error 404: Not Found
  FAILED: https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/cbsa2602c.txt: HTTP Error 404: Not Found
  Total monthly records: 124,379

[3/4] Downloading FHFA HPI - All Transactions...
  Downloading FHFA All-Transactions HPI (metro)...
  Total FHFA AT records: 83,230

[4/4] Downloading FHFA HPI - Purchase Only...
  Downloading FHFA Purchase-Only HPI (100 largest metros)...
  Total FHFA PO records: 13,900

============================================================
BUILDING DUCKDB DATABASE
============================================================

Creating building_permits_annual table...
  -> 16,606 rows, 1980-2024
Creating building_permits_monthly table...
  -> 124,379 rows, 2000-2025
Creating fhfa_hpi_all_transactions table...
  -> 83,230 rows (69,828 with data), 410 metros, 1975-2025
Creating fhfa_hpi_purchase_only table...
  -> 13,900 rows, 100 metros, 1991-2025

Creating views...
  -> permits_with_hpi_annual view created
  -> permits_with_hpi_quarterly view created

============================================================
DATABASE SUMMARY
============================================================

  building_permits_annual: 16,606 rows, 21 columns
    Year range: 1980-2024

  building_permits_monthly: 124,379 rows, 22 columns
    Year range: 2000-2025

  fhfa_hpi_all_transactions: 83,230 rows, 6 columns
    Year range: 1975-2025

  fhfa_hpi_purchase_only: 13,900 rows, 6 columns
    Year range: 1991-2025

  VIEW permits_with_hpi_annual: 16,606 rows

  VIEW permits_with_hpi_quarterly: 42,339 rows

Database written to: /Users/psg24/repos/housing-supply/housing_supply.duckdb
Database size: 19.3 MB
TaskUpdate
{
  "taskId": "3",
  "status": "completed"
}
Updated task #3 status
TaskUpdate
{
  "taskId": "4",
  "status": "completed"
}
Updated task #4 status
TaskUpdate
{
  "taskId": "5",
  "status": "completed"
}
Updated task #5 status

All data downloaded and loaded. Let me run some verification queries to make sure everything looks right.

$ Bash
List all tables and views in the database
duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
-- Show all tables and views
SELECT table_name, table_type
FROM information_schema.tables
WHERE table_schema = 'main'
ORDER BY table_type, table_name;
"
┌────────────────────────────┬────────────┐
│         table_name         │ table_type │
│          varchar           │  varchar   │
├────────────────────────────┼────────────┤
│ building_permits_annual    │ BASE TABLE │
│ building_permits_monthly   │ BASE TABLE │
│ fhfa_hpi_all_transactions  │ BASE TABLE │
│ fhfa_hpi_purchase_only     │ BASE TABLE │
│ permits_with_hpi_annual    │ VIEW       │
│ permits_with_hpi_quarterly │ VIEW       │
└────────────────────────────┴────────────┘
$ Bash
Sample query: Houston annual permits
duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
-- Sample annual permits data
SELECT year, geo_code, geo_name, units_total, units_1, units_5plus, value_total
FROM building_permits_annual
WHERE geo_name LIKE '%Houston%' AND year >= 2018
ORDER BY year;
"
┌───────┬──────────┬──────────────────────────────────────┬─────────────┬─────────┬─────────────┬─────────────┐
│ year  │ geo_code │               geo_name               │ units_total │ units_1 │ units_5plus │ value_total │
│ int32 │ varchar  │               varchar                │    int32    │  int32  │    int32    │    int64    │
├───────┼──────────┼──────────────────────────────────────┼─────────────┼─────────┼─────────────┼─────────────┤
│  2018 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       57288 │   40321 │       16607 │     9172451 │
│  2019 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       63672 │   39507 │       23808 │     9826747 │
│  2020 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       70540 │   49915 │       20284 │    12702945 │
│  2021 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       69263 │   52719 │       15648 │    13677948 │
│  2022 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       75633 │   47606 │       27124 │    15012887 │
│  2023 │ 26420    │ Houston-The Woodlands-Sugar Land  TX │       68755 │   50444 │       16491 │    15785040 │
│  2024 │ 26420    │ Houston-Pasadena-The Woodlands  TX   │       65747 │   52703 │       11505 │    17486575 │
└───────┴──────────┴──────────────────────────────────────┴─────────────┴─────────┴─────────────┴─────────────┘
$ Bash
Sample query: Houston HPI data
duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
-- Sample FHFA HPI data
SELECT cbsa_code, metro_name, year, quarter, hpi_at_nsa
FROM fhfa_hpi_all_transactions
WHERE cbsa_code = '26420' AND year >= 2018
ORDER BY year, quarter;
"
┌───────────┬────────────────────────────────────┬───────┬─────────┬────────────┐
│ cbsa_code │             metro_name             │ year  │ quarter │ hpi_at_nsa │
│  varchar  │              varchar               │ int32 │  int32  │   double   │
├───────────┼────────────────────────────────────┼───────┼─────────┼────────────┤
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2018 │       1 │     262.16 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2018 │       2 │     266.65 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2018 │       3 │     270.21 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2018 │       4 │      269.9 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2019 │       1 │     272.85 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2019 │       2 │     277.16 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2019 │       3 │     279.88 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2019 │       4 │     280.96 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2020 │       1 │     285.32 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2020 │       2 │     289.23 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2020 │       3 │     291.07 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2020 │       4 │     295.11 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2021 │       1 │     299.08 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2021 │       2 │     311.98 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2021 │       3 │     325.55 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2021 │       4 │     336.62 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2022 │       1 │     351.47 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2022 │       2 │     365.14 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2022 │       3 │     376.69 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2022 │       4 │      377.1 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2023 │       1 │     376.93 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2023 │       2 │     385.44 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2023 │       3 │     388.52 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2023 │       4 │     388.93 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2024 │       1 │     394.85 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2024 │       2 │     393.59 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2024 │       3 │     402.66 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2024 │       4 │     404.45 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2025 │       1 │     406.92 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2025 │       2 │     404.13 │
│ 26420     │ Houston-Pasadena-The Woodlands, TX │  2025 │       3 │     408.65 │
├───────────┴────────────────────────────────────┴───────┴─────────┴────────────┤
│ 31 rows                                                             5 columns │
└───────────────────────────────────────────────────────────────────────────────┘
$ Bash
Test combined annual view for Houston
duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
-- Test the combined view
SELECT year, geo_name, units_total, units_1, units_5plus,
       ROUND(avg_hpi_at_nsa, 1) as hpi,
       ROUND(value_total / 1000.0, 0) as value_millions
FROM permits_with_hpi_annual
WHERE cbsa_code = '26420' AND year >= 2015
ORDER BY year;
"
┌───────┬──────────────────────────────────────┬─────────────┬─────────┬─────────────┬────────┬────────────────┐
│ year  │               geo_name               │ units_total │ units_1 │ units_5plus │  hpi   │ value_millions │
│ int32 │               varchar                │    int32    │  int32  │    int32    │ double │     double     │
├───────┼──────────────────────────────────────┼─────────────┼─────────┼─────────────┼────────┼────────────────┤
│  2015 │ Houston-The Woodlands-Sugar Land  TX │       56901 │   36786 │       19798 │  236.2 │         8566.0 │
│  2016 │ Houston-The Woodlands-Sugar Land  TX │       44732 │   35367 │        9054 │  245.8 │         7396.0 │
│  2017 │ Houston-The Woodlands-Sugar Land  TX │       42395 │   36348 │        5722 │  255.8 │         7880.0 │
│  2018 │ Houston-The Woodlands-Sugar Land  TX │       57288 │   40321 │       16607 │  267.2 │         9172.0 │
│  2019 │ Houston-The Woodlands-Sugar Land  TX │       63672 │   39507 │       23808 │  277.7 │         9827.0 │
│  2020 │ Houston-The Woodlands-Sugar Land  TX │       70540 │   49915 │       20284 │  290.2 │        12703.0 │
│  2021 │ Houston-The Woodlands-Sugar Land  TX │       69263 │   52719 │       15648 │  318.3 │        13678.0 │
│  2022 │ Houston-The Woodlands-Sugar Land  TX │       75633 │   47606 │       27124 │  367.6 │        15013.0 │
│  2023 │ Houston-The Woodlands-Sugar Land  TX │       68755 │   50444 │       16491 │  385.0 │        15785.0 │
│  2024 │ Houston-Pasadena-The Woodlands  TX   │       65747 │   52703 │       11505 │  398.9 │        17487.0 │
├───────┴──────────────────────────────────────┴─────────────┴─────────┴─────────────┴────────┴────────────────┤
│ 10 rows                                                                                            7 columns │
└──────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
$ Bash
Show schemas for all tables
duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
-- Show schema for all tables
DESCRIBE building_permits_annual;
" && echo "---" && duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
DESCRIBE building_permits_monthly;
" && echo "---" && duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
DESCRIBE fhfa_hpi_all_transactions;
" && echo "---" && duckdb /Users/psg24/repos/housing-supply/housing_supply.duckdb -c "
DESCRIBE fhfa_hpi_purchase_only;
"
┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │  null   │   key   │ default │  extra  │
│   varchar   │   varchar   │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ year        │ INTEGER     │ NO      │ PRI     │         │         │
│ geo_code    │ VARCHAR     │ NO      │ PRI     │         │         │
│ cbsa_code   │ VARCHAR     │ YES     │         │         │         │
│ csa_code    │ VARCHAR     │ YES     │         │         │         │
│ geo_name    │ VARCHAR     │ YES     │         │         │         │
│ metro_micro │ VARCHAR     │ YES     │         │         │         │
│ units_total │ INTEGER     │ YES     │         │         │         │
│ units_1     │ INTEGER     │ YES     │         │         │         │
│ units_2     │ INTEGER     │ YES     │         │         │         │
│ units_3_4   │ INTEGER     │ YES     │         │         │         │
│ units_5plus │ INTEGER     │ YES     │         │         │         │
│ bldgs_total │ INTEGER     │ YES     │         │         │         │
│ bldgs_1     │ INTEGER     │ YES     │         │         │         │
│ bldgs_2     │ INTEGER     │ YES     │         │         │         │
│ bldgs_3_4   │ INTEGER     │ YES     │         │         │         │
│ bldgs_5plus │ INTEGER     │ YES     │         │         │         │
│ value_total │ BIGINT      │ YES     │         │         │         │
│ value_1     │ BIGINT      │ YES     │         │         │         │
│ value_2     │ BIGINT      │ YES     │         │         │         │
│ value_3_4   │ BIGINT      │ YES     │         │         │         │
│ value_5plus │ BIGINT      │ YES     │         │         │         │
├─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┤
│ 21 rows                                                 6 columns │
└───────────────────────────────────────────────────────────────────┘
---
┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │  null   │   key   │ default │  extra  │
│   varchar   │   varchar   │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ year        │ INTEGER     │ NO      │ PRI     │         │         │
│ month       │ INTEGER     │ NO      │ PRI     │         │         │
│ geo_code    │ VARCHAR     │ NO      │ PRI     │         │         │
│ cbsa_code   │ VARCHAR     │ YES     │         │         │         │
│ csa_code    │ VARCHAR     │ YES     │         │         │         │
│ geo_name    │ VARCHAR     │ YES     │         │         │         │
│ metro_micro │ VARCHAR     │ YES     │         │         │         │
│ units_total │ INTEGER     │ YES     │         │         │         │
│ units_1     │ INTEGER     │ YES     │         │         │         │
│ units_2     │ INTEGER     │ YES     │         │         │         │
│ units_3_4   │ INTEGER     │ YES     │         │         │         │
│ units_5plus │ INTEGER     │ YES     │         │         │         │
│ bldgs_total │ INTEGER     │ YES     │         │         │         │
│ bldgs_1     │ INTEGER     │ YES     │         │         │         │
│ bldgs_2     │ INTEGER     │ YES     │         │         │         │
│ bldgs_3_4   │ INTEGER     │ YES     │         │         │         │
│ bldgs_5plus │ INTEGER     │ YES     │         │         │         │
│ value_total │ BIGINT      │ YES     │         │         │         │
│ value_1     │ BIGINT      │ YES     │         │         │         │
│ value_2     │ BIGINT      │ YES     │         │         │         │
│ value_3_4   │ BIGINT      │ YES     │         │         │         │
│ value_5plus │ BIGINT      │ YES     │         │         │         │
├─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┤
│ 22 rows                                                 6 columns │
└───────────────────────────────────────────────────────────────────┘
---
┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │  null   │   key   │ default │  extra  │
│   varchar   │   varchar   │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ cbsa_code   │ VARCHAR     │ NO      │ PRI     │         │         │
│ metro_name  │ VARCHAR     │ YES     │         │         │         │
│ year        │ INTEGER     │ NO      │ PRI     │         │         │
│ quarter     │ INTEGER     │ NO      │ PRI     │         │         │
│ hpi_at_nsa  │ DOUBLE      │ YES     │         │         │         │
│ hpi_at_se   │ DOUBLE      │ YES     │         │         │         │
└─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┘
---
┌─────────────┬─────────────┬─────────┬─────────┬─────────┬─────────┐
│ column_name │ column_type │  null   │   key   │ default │  extra  │
│   varchar   │   varchar   │ varchar │ varchar │ varchar │ varchar │
├─────────────┼─────────────┼─────────┼─────────┼─────────┼─────────┤
│ cbsa_code   │ VARCHAR     │ NO      │ PRI     │         │         │
│ metro_name  │ VARCHAR     │ YES     │         │         │         │
│ year        │ INTEGER     │ NO      │ PRI     │         │         │
│ quarter     │ INTEGER     │ NO      │ PRI     │         │         │
│ hpi_po_nsa  │ DOUBLE      │ YES     │         │         │         │
│ hpi_po_sa   │ DOUBLE      │ YES     │         │         │         │
└─────────────┴─────────────┴─────────┴─────────┴─────────┴─────────┘

Everything is working. Let me save key learnings to memory for future reference.

📝 Write MEMORY.md
/Users/psg24/.claude/projects/-Users-psg24-repos-housing-supply/memory/MEMORY.md
# Housing Supply Project

## Database: `housing_supply.duckdb`
Built by `build_db.py`. Raw files cached in `data/raw/`.

### Tables
- `building_permits_annual` - Census BPS, 1980-2024, ~16.6K rows. PK: (year, geo_code). Pre-2004 uses old MSA codes; 2004+ uses CBSA codes. 2024+ includes micropolitan areas.
- `building_permits_monthly` - Census BPS, 2000-2025, ~124K rows. PK: (year, month, geo_code). Same geo code transition as annual.
- `fhfa_hpi_all_transactions` - FHFA HPI, 410 metros, quarterly 1975-2025 (data starts ~1986 for most). Base: 1995Q1=100. NSA only.
- `fhfa_hpi_purchase_only` - FHFA HPI, 100 largest metros, quarterly 1991-2025. NSA + SA. Base: 1991Q1=100.

### Views
- `permits_with_hpi_annual` - Annual permits LEFT JOIN'd to annual avg HPI (on cbsa_code). Works for 2004+ data.
- `permits_with_hpi_quarterly` - Monthly permits aggregated to quarters, joined to quarterly HPI.

### Key Notes
- Census BPS value columns are in thousands of dollars
- Pre-2004 Census files use old MSA/CMSA/PMSA codes (not joinable to FHFA CBSA codes)
- 2024+ Census files include ~920 CBSAs (metro + micro); earlier years had ~380 metros only
- FHFA data uses 5-digit CBSA codes throughout
File created successfully at: /Users/psg24/.claude/projects/-Users-psg24-repos-housing-supply/memory/MEMORY.md

The database is built. Here's a summary:

Database: housing_supply.duckdb (19.3 MB)

4 Tables

Table Rows Coverage Source
building_permits_annual 16,606 1980-2024, ~380 MSAs/CBSAs per year Census BPS
building_permits_monthly 124,379 2000-2025, monthly by MSA/CBSA Census BPS
fhfa_hpi_all_transactions 83,230 1975-2025, 410 metros, quarterly FHFA HPI
fhfa_hpi_purchase_only 13,900 1991-2025, 100 largest metros, quarterly (NSA + SA) FHFA HPI

2 Pre-built Views

  • permits_with_hpi_annual - Annual permits joined with annual-average HPI by CBSA code
  • permits_with_hpi_quarterly - Monthly permits aggregated to quarters, joined to quarterly HPI

Key details

  • Building permits columns: units and buildings by type (1-unit, 2-unit, 3-4 unit, 5+), plus valuation in $000s
  • HPI columns: All-Transactions index (NSA, base 1995Q1=100) and Purchase-Only index (NSA + SA, base 1991Q1=100)
  • Join key: cbsa_code (5-digit FIPS, works for 2004+ permits data)
  • Pre-2004 Census data uses old MSA codes that don't directly join to FHFA's CBSA codes
  • Raw files are cached in data/raw/ so re-running build_db.py skips already-downloaded files

Can you add data on the stock of housing too? Use the ACS to do this.

EnterPlanMode
{}
Entered plan mode. You should now focus on exploring the codebase and designing an implementation approach.

In plan mode, you should:
1. Thoroughly explore the codebase to understand existing patterns
2. Identify similar features and architectural approaches
3. Consider multiple approaches and their trade-offs
4. Use AskUserQuestion if you need to clarify the approach
5. Design a concrete implementation strategy
6. When ready, use ExitPlanMode to present your plan for approval

Remember: DO NOT write or edit any files yet. This is a read-only exploration and planning phase.

Let me explore the ACS data availability and the existing codebase to design how to integrate housing stock data.

Task
Explore ACS housing data
{
  "prompt": "I need to find ACS (American Community Survey) data on housing stock at the MSA/CBSA level. Please research:\n\n1. What ACS tables contain housing unit counts by MSA/CBSA? Key tables include:\n   - B25001 (Total Housing Units)\n   - B25002 (Occupancy Status - occupied vs vacant)\n   - B25003 (Tenure - owner vs renter)\n   - B25024 (Units in Structure - single-family vs multi-family breakdown)\n   - B25034 (Year Structure Built)\n   - B25077 (Median Value for Owner-Occupied)\n\n2. What's the best way to bulk-download this data? Options:\n   - Census API (api.census.gov) - check the ACS 1-year and 5-year endpoints\n   - data.census.gov bulk downloads\n   \n3. For the Census API approach, figure out:\n   - The exact API URL format for getting ACS 1-year estimates at the \"metropolitan statistical area/micropolitan statistical area\" geography level\n   - Example: https://api.census.gov/data/2022/acs/acs1?get=NAME,B25001_001E&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*\n   - What years are available for ACS 1-year estimates? (typically 2005-2023)\n   - What years are available for ACS 5-year? (typically 2009-2023, where 2009 means 2005-2009)\n   - Do you need an API key? (census API works without a key for limited requests)\n\n4. Actually test-fetch one of these URLs to confirm the format works:\n   - Try: https://api.census.gov/data/2022/acs/acs1?get=NAME,B25001_001E&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*\n   - Report the response format (JSON array of arrays)\n\n5. For historical depth, check what years of ACS 1-year data are available. The ACS 1-year started in 2005, but 2020 was skipped due to COVID. The ACS 5-year started with the 2005-2009 release.\n\nReport back: exact API URLs, available table IDs, year ranges, and the JSON response format.",
  "subagent_type": "general-purpose"
}
Here is the comprehensive research report on ACS housing stock data at the MSA/CBSA level.

---

## 1. Key ACS Tables -- Confirmed Working at MSA/CBSA Level

All six tables you identified are available and confirmed working via the Census API:

| Table | Description | Key Variables |
|---|---|---|
| **B25001** | Total Housing Units | `B25001_001E` (total) |
| **B25002** | Occupancy Status | `_001E` (total), `_002E` (occupied), `_003E` (vacant) |
| **B25003** | Tenure | `_001E` (total occupied), `_002E` (owner), `_003E` (renter) |
| **B25024** | Units in Structure | `_001E` through `_011E` (total, 1-det, 1-att, 2, 3-4, 5-9, 10-19, 20-49, 50+, mobile, boat/rv) |
| **B25034** | Year Structure Built | `_001E` through `_011E` (total, 2020+, 2010-19, 2000-09, 1990s, 1980s, 1970s, 1960s, 1950s, 1940s, pre-1939) |
| **B25077** | Median Value (Owner-Occupied) | `B25077_001E` (median dollars) |

---

## 2. Exact API URL Format

**ACS 1-Year:**
```
https://api.census.gov/data/{YEAR}/acs/acs1?get=NAME,{VARIABLES}&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*
```

**ACS 5-Year:**
```
https://api.census.gov/data/{YEAR}/acs/acs5?get=NAME,{VARIABLES}&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*
```

Use `*` for all MSAs, or specific CBSA FIPS codes (comma-separated, e.g., `10420,12060,35620`).

You can mix variables from multiple tables in a single request (up to ~50 variables):
```
?get=NAME,B25001_001E,B25002_002E,B25002_003E,B25003_002E,B25003_003E,B25077_001E
```

---

## 3. Confirmed Test Results -- JSON Response Format

The API returns a **JSON array of arrays**. First element is the header row; subsequent elements are data rows. All values are returned as **strings** (must be cast to numeric types).

Example response from the confirmed test:
```json
[
  ["NAME","B25001_001E","B25002_001E","B25002_002E","B25002_003E","B25003_001E","B25003_002E","B25003_003E","B25077_001E","metropolitan statistical area/micropolitan statistical area"],
  ["Akron, OH Metro Area","318589","318589","294908","23681","294908","201958","92950","199400","10420"],
  ["Atlanta-Sandy Springs-Alpharetta, GA Metro Area","2488662","2488662","2311639","177023","2311639","1537172","774467","356200","12060"],
  ["New York-Newark-Jersey City, NY-NJ-PA Metro Area","8074003","8074003","7478571","595432","7478571","3867921","3610650","603900","35620"]
]
```

When querying all MSAs with `*`, the 2022 ACS 1-year returns approximately **917 rows** (all metro + micropolitan areas). The 2005 ACS 1-year returns only about **493 rows** because early vintages only covered areas with 65,000+ population.

---

## 4. Year Availability

### ACS 1-Year Estimates
**Available: 2005-2019, 2021-2024** (per the Census page title: "American Community Survey 1-Year Data (2005-2024)")

- **2020 is SKIPPED.** The API returns a **404 error** for `2020/acs/acs1`. The Census Bureau did not release standard 2020 ACS 1-year estimates due to COVID-19 data collection problems (only two-thirds of normal responses were collected, with significant nonresponse bias). Only "experimental" estimates were released for nation/state geographies -- not MSAs.
- **2024 is the latest available** (confirmed working, returned 321,578 housing units for Akron, OH).
- **2005 is the earliest** (confirmed working, but with fewer MSAs due to the 65,000+ population threshold).
- **2004 does NOT have standard ACS 1-year estimates** available at the MSA level via this API path (only PUMS microdata existed).

### ACS 5-Year Estimates
**Available: 2009-2023** (per the Census page title: "American Community Survey 5-Year Data (2009-2024)")

- **2009 is the first** (covering 2005-2009) -- confirmed working
- **2008 returns 404** -- confirmed does not exist
- **2023 is the latest confirmed** (covering 2019-2023)
- The 5-year DOES have a 2020 vintage (covering 2016-2020) since the 5-year averages dilute the COVID impact
- 5-year covers ALL geographies regardless of population size

---

## 5. API Key

- The API **works without a key** for anonymous requests (all test fetches succeeded with no key)
- Passing an explicitly invalid key produces an error, but omitting the key parameter entirely works fine
- For bulk/production use, register for a free key at: https://api.census.gov/data/key_signup.html
- Anonymous rate limit is approximately 500 requests/day; with a key it is much higher

---

## 6. Recommended Bulk Download Approach

**Census API (recommended):** Loop over years and tables programmatically. Each call returns clean JSON for all ~917 MSAs in under a second. A complete download of all 6 tables across all available years (about 19 years x 6 tables = ~114 API calls) is very manageable.

Pseudocode:
```
for year in [2005..2019, 2021..2024]:
    for table_vars in [B25001_vars, B25002_vars, B25003_vars, B25024_vars, B25034_vars, B25077_vars]:
        url = f"https://api.census.gov/data/{year}/acs/acs1?get=NAME,{table_vars}&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*"
        response = fetch(url)
        # Parse JSON array-of-arrays, save to CSV/database
```

---

## 7. Important Caveats

1. **2020 ACS 1-year does not exist** at the MSA level -- skip it in any loop
2. **CBSA delineations change over time** -- OMB updates MSA boundaries periodically (2013, 2015, 2018, 2020, 2023). The same FIPS code may cover different counties in different years.
3. **B25034 "newest" category shifts** -- the label for `_002E` changes by vintage (e.g., "Built 2014 or later" in 2017, "Built 2020 or later" in 2022). Check variable labels per year.
4. **Early years have fewer MSAs** -- 2005-2007 only published 1-year data for areas with 65,000+ population; use 5-year data for comprehensive MSA coverage in earlier periods.
5. **All numeric values are returned as strings** in the JSON -- must be parsed to integers/floats.

The full detailed plan is written to `/Users/psg24/.claude/plans/ancient-drifting-mist-agent-a9f78f9.md`.
agentId: a9f78f9 (for resuming to continue this agent's work if needed)
<usage>total_tokens: 35077
tool_uses: 37
duration_ms: 250216</usage>
Read
{
  "file_path": "/Users/psg24/repos/housing-supply/build_db.py"
}
     1→#!/usr/bin/env python3
     2→"""
     3→Build a DuckDB database combining:
     4→1. Census Bureau Building Permits Survey (BPS) at MSA/CBSA level (1980-present)
     5→2. FHFA House Price Index at MSA/CBSA level (1975-present)
     6→
     7→Usage:
     8→    python3 build_db.py
     9→"""
    10→
    11→import csv
    12→import io
    13→import os
    14→import re
    15→import sys
    16→import time
    17→import urllib.request
    18→import urllib.error
    19→import duckdb
    20→
    21→DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data", "raw")
    22→DB_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "housing_supply.duckdb")
    23→
    24→# Census BPS URLs
    25→CENSUS_METRO_BASE = "https://www2.census.gov/econ/bps/Metro%20(ending%202023)/"
    26→CENSUS_CBSA_BASE = "https://www2.census.gov/econ/bps/CBSA%20(beginning%20Jan%202024)/"
    27→
    28→# FHFA HPI URLs
    29→FHFA_AT_METRO_CSV = "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_at_metro.csv"
    30→FHFA_PO_METRO_TXT = "https://www.fhfa.gov/hpi/download/quarterly_datasets/hpi_po_metro.txt"
    31→
    32→
    33→def download(url, retries=3, delay=1.0):
    34→    """Download a URL with retries, return bytes."""
    35→    for attempt in range(retries):
    36→        try:
    37→            req = urllib.request.Request(url, headers={"User-Agent": "Mozilla/5.0 housing-supply-research"})
    38→            with urllib.request.urlopen(req, timeout=60) as resp:
    39→                return resp.read()
    40→        except (urllib.error.URLError, urllib.error.HTTPError, TimeoutError) as e:
    41→            if attempt < retries - 1:
    42→                print(f"  Retry {attempt+1}/{retries} for {url}: {e}")
    43→                time.sleep(delay * (attempt + 1))
    44→            else:
    45→                print(f"  FAILED: {url}: {e}")
    46→                return None
    47→
    48→
    49→def download_cached(url, filename):
    50→    """Download to cache file if not already present."""
    51→    path = os.path.join(DATA_DIR, filename)
    52→    if os.path.exists(path) and os.path.getsize(path) > 0:
    53→        return path
    54→    data = download(url)
    55→    if data is None:
    56→        return None
    57→    with open(path, "wb") as f:
    58→        f.write(data)
    59→    return path
    60→
    61→
    62→# ---------------------------------------------------------------------------
    63→# Census BPS Parsing
    64→# ---------------------------------------------------------------------------
    65→
    66→def parse_bps_annual_file(raw_bytes, year):
    67→    """Parse a Census BPS annual text file into a list of row dicts.
    68→
    69→    Handles both old MSA format (1980-2003) and new CBSA format (2004+).
    70→    """
    71→    text = raw_bytes.decode("latin-1")
    72→    lines = text.strip().split("\n")
    73→
    74→    rows = []
    75→    for line in lines[2:]:  # Skip 2 header rows
    76→        line = line.strip()
    77→        if not line:
    78→            continue
    79→
    80→        # Parse CSV - handle potential issues
    81→        parts = list(csv.reader([line]))[0]
    82→        if len(parts) < 29:
    83→            continue
    84→
    85→        # Determine format based on year
    86→        survey_date = parts[0].strip()
    87→
    88→        if year < 2004:
    89→            # Old MSA format: MSA/CMSA, PMSA, coverage_flag, name
    90→            msa_code = parts[1].strip()
    91→            pmsa_code = parts[2].strip()
    92→            geo_name = parts[4].strip()
    93→
    94→            # Use PMSA if it's not 9999, otherwise use MSA code
    95→            if pmsa_code and pmsa_code != "9999":
    96→                geo_code = pmsa_code
    97→            else:
    98→                geo_code = msa_code
    99→
   100→            cbsa_code = None  # Old codes don't map to CBSA
   101→            csa_code = None
   102→            metro_micro = "2"  # All are metro in old format
   103→        elif year < 2024:
   104→            # CBSA format 2004-2023: CSA, CBSA, MONCOV, name
   105→            csa_code = parts[1].strip() or None
   106→            cbsa_code = parts[2].strip()
   107→            geo_code = cbsa_code
   108→            geo_name = parts[4].strip()
   109→            metro_micro = "2"  # All metro pre-2024
   110→        else:
   111→            # CBSA format 2024+: CSA, CBSA, HHEADER, name
   112→            csa_code = parts[1].strip() or None
   113→            cbsa_code = parts[2].strip()
   114→            geo_code = cbsa_code
   115→            metro_micro = parts[3].strip()  # 2=metro, 5=micro
   116→            geo_name = parts[4].strip()
   117→
   118→        def safe_int(s):
   119→            s = s.strip()
   120→            if not s or s == '-':
   121→                return 0
   122→            return int(s)
   123→
   124→        row = {
   125→            "year": year,
   126→            "geo_code": geo_code,
   127→            "cbsa_code": cbsa_code,
   128→            "csa_code": csa_code,
   129→            "geo_name": geo_name,
   130→            "metro_micro": metro_micro,
   131→            "units_1": safe_int(parts[6]),
   132→            "units_2": safe_int(parts[9]),
   133→            "units_3_4": safe_int(parts[12]),
   134→            "units_5plus": safe_int(parts[15]),
   135→            "bldgs_1": safe_int(parts[5]),
   136→            "bldgs_2": safe_int(parts[8]),
   137→            "bldgs_3_4": safe_int(parts[11]),
   138→            "bldgs_5plus": safe_int(parts[14]),
   139→            "value_1": safe_int(parts[7]),
   140→            "value_2": safe_int(parts[10]),
   141→            "value_3_4": safe_int(parts[13]),
   142→            "value_5plus": safe_int(parts[16]),
   143→        }
   144→        row["units_total"] = row["units_1"] + row["units_2"] + row["units_3_4"] + row["units_5plus"]
   145→        row["bldgs_total"] = row["bldgs_1"] + row["bldgs_2"] + row["bldgs_3_4"] + row["bldgs_5plus"]
   146→        row["value_total"] = row["value_1"] + row["value_2"] + row["value_3_4"] + row["value_5plus"]
   147→
   148→        rows.append(row)
   149→
   150→    return rows
   151→
   152→
   153→def parse_bps_monthly_file(raw_bytes, year, month):
   154→    """Parse a Census BPS monthly text file into a list of row dicts."""
   155→    text = raw_bytes.decode("latin-1")
   156→    lines = text.strip().split("\n")
   157→
   158→    rows = []
   159→    for line in lines[2:]:
   160→        line = line.strip()
   161→        if not line:
   162→            continue
   163→
   164→        parts = list(csv.reader([line]))[0]
   165→        if len(parts) < 29:
   166→            continue
   167→
   168→        if year < 2004:
   169→            msa_code = parts[1].strip()
   170→            pmsa_code = parts[2].strip()
   171→            geo_name = parts[4].strip()
   172→            if pmsa_code and pmsa_code != "9999":
   173→                geo_code = pmsa_code
   174→            else:
   175→                geo_code = msa_code
   176→            cbsa_code = None
   177→            csa_code = None
   178→            metro_micro = "2"
   179→        elif year < 2024:
   180→            csa_code = parts[1].strip() or None
   181→            cbsa_code = parts[2].strip()
   182→            geo_code = cbsa_code
   183→            geo_name = parts[4].strip()
   184→            metro_micro = "2"
   185→        else:
   186→            csa_code = parts[1].strip() or None
   187→            cbsa_code = parts[2].strip()
   188→            geo_code = cbsa_code
   189→            metro_micro = parts[3].strip()
   190→            geo_name = parts[4].strip()
   191→
   192→        def safe_int(s):
   193→            s = s.strip()
   194→            if not s or s == '-':
   195→                return 0
   196→            return int(s)
   197→
   198→        row = {
   199→            "year": year,
   200→            "month": month,
   201→            "geo_code": geo_code,
   202→            "cbsa_code": cbsa_code,
   203→            "csa_code": csa_code,
   204→            "geo_name": geo_name,
   205→            "metro_micro": metro_micro,
   206→            "units_1": safe_int(parts[6]),
   207→            "units_2": safe_int(parts[9]),
   208→            "units_3_4": safe_int(parts[12]),
   209→            "units_5plus": safe_int(parts[15]),
   210→            "bldgs_1": safe_int(parts[5]),
   211→            "bldgs_2": safe_int(parts[8]),
   212→            "bldgs_3_4": safe_int(parts[11]),
   213→            "bldgs_5plus": safe_int(parts[14]),
   214→            "value_1": safe_int(parts[7]),
   215→            "value_2": safe_int(parts[10]),
   216→            "value_3_4": safe_int(parts[13]),
   217→            "value_5plus": safe_int(parts[16]),
   218→        }
   219→        row["units_total"] = row["units_1"] + row["units_2"] + row["units_3_4"] + row["units_5plus"]
   220→        row["bldgs_total"] = row["bldgs_1"] + row["bldgs_2"] + row["bldgs_3_4"] + row["bldgs_5plus"]
   221→        row["value_total"] = row["value_1"] + row["value_2"] + row["value_3_4"] + row["value_5plus"]
   222→
   223→        rows.append(row)
   224→
   225→    return rows
   226→
   227→
   228→def download_all_bps_annual():
   229→    """Download all annual BPS files from 1980 to present."""
   230→    all_rows = []
   231→    current_year = 2026
   232→
   233→    # 1980-2023: Metro files
   234→    for year in range(1980, 2024):
   235→        filename = f"ma{year}a.txt"
   236→        url = CENSUS_METRO_BASE + filename
   237→        print(f"  Downloading BPS annual {year}...")
   238→        data = download_cached(url, f"bps_annual_{year}.txt")
   239→        if data:
   240→            with open(data, "rb") as f:
   241→                raw = f.read()
   242→            rows = parse_bps_annual_file(raw, year)
   243→            all_rows.extend(rows)
   244→            print(f"    -> {len(rows)} MSAs")
   245→
   246→    # 2024+: CBSA files
   247→    for year in range(2024, current_year):
   248→        filename = f"cbsa{year}a.txt"
   249→        url = CENSUS_CBSA_BASE + filename
   250→        print(f"  Downloading BPS annual {year} (CBSA)...")
   251→        data = download_cached(url, f"bps_annual_{year}.txt")
   252→        if data:
   253→            with open(data, "rb") as f:
   254→                raw = f.read()
   255→            rows = parse_bps_annual_file(raw, year)
   256→            all_rows.extend(rows)
   257→            print(f"    -> {len(rows)} CBSAs")
   258→
   259→    return all_rows
   260→
   261→
   262→def download_all_bps_monthly():
   263→    """Download all monthly BPS files from 2000 to present."""
   264→    all_rows = []
   265→    current_year = 2026
   266→    current_month = 2  # February 2026
   267→
   268→    # 2000-2023: Metro monthly files
   269→    for year in range(2000, 2024):
   270→        for month in range(1, 13):
   271→            yy = f"{year % 100:02d}"
   272→            mm = f"{month:02d}"
   273→            filename = f"ma{yy}{mm}c.txt"
   274→            url = CENSUS_METRO_BASE + filename
   275→            cache_name = f"bps_monthly_{year}_{mm}.txt"
   276→
   277→            data = download_cached(url, cache_name)
   278→            if data:
   279→                with open(data, "rb") as f:
   280→                    raw = f.read()
   281→                rows = parse_bps_monthly_file(raw, year, month)
   282→                all_rows.extend(rows)
   283→        print(f"  Downloaded BPS monthly {year}: {len([r for r in all_rows if r['year']==year])} records")
   284→
   285→    # 2024+: CBSA monthly files
   286→    for year in range(2024, current_year + 1):
   287→        end_month = current_month if year == current_year else 12
   288→        for month in range(1, end_month + 1):
   289→            yy = f"{year % 100:02d}"
   290→            mm = f"{month:02d}"
   291→            filename = f"cbsa{yy}{mm}c.txt"
   292→            url = CENSUS_CBSA_BASE + filename
   293→            cache_name = f"bps_monthly_{year}_{mm}.txt"
   294→
   295→            data = download_cached(url, cache_name)
   296→            if data:
   297→                with open(data, "rb") as f:
   298→                    raw = f.read()
   299→                rows = parse_bps_monthly_file(raw, year, month)
   300→                all_rows.extend(rows)
   301→        yr_count = len([r for r in all_rows if r['year'] == year])
   302→        if yr_count:
   303→            print(f"  Downloaded BPS monthly {year}: {yr_count} records")
   304→
   305→    return all_rows
   306→
   307→
   308→# ---------------------------------------------------------------------------
   309→# FHFA HPI Parsing
   310→# ---------------------------------------------------------------------------
   311→
   312→def download_fhfa_all_transactions():
   313→    """Download and parse FHFA All-Transactions HPI at metro level."""
   314→    print("  Downloading FHFA All-Transactions HPI (metro)...")
   315→    path = download_cached(FHFA_AT_METRO_CSV, "fhfa_hpi_at_metro.csv")
   316→    if not path:
   317→        return []
   318→
   319→    rows = []
   320→    with open(path, "r") as f:
   321→        reader = csv.reader(f)
   322→        for parts in reader:
   323→            if len(parts) < 5:
   324→                continue
   325→
   326→            metro_name = parts[0].strip().strip('"')
   327→            cbsa_code = parts[1].strip()
   328→            year_str = parts[2].strip()
   329→            qtr_str = parts[3].strip()
   330→            index_val = parts[4].strip()
   331→            std_err = parts[5].strip() if len(parts) > 5 else None
   332→
   333→            if not year_str.isdigit():
   334→                continue
   335→
   336→            hpi = None
   337→            if index_val and index_val != "-":
   338→                try:
   339→                    hpi = float(index_val)
   340→                except ValueError:
   341→                    pass
   342→
   343→            se = None
   344→            if std_err and std_err != "-":
   345→                # Remove parentheses
   346→                se_clean = std_err.replace("(", "").replace(")", "").strip()
   347→                try:
   348→                    se = float(se_clean)
   349→                except ValueError:
   350→                    pass
   351→
   352→            rows.append({
   353→                "metro_name": metro_name,
   354→                "cbsa_code": cbsa_code,
   355→                "year": int(year_str),
   356→                "quarter": int(qtr_str),
   357→                "hpi_at_nsa": hpi,
   358→                "hpi_at_se": se,
   359→            })
   360→
   361→    return rows
   362→
   363→
   364→def download_fhfa_purchase_only():
   365→    """Download and parse FHFA Purchase-Only HPI (100 largest metros)."""
   366→    print("  Downloading FHFA Purchase-Only HPI (100 largest metros)...")
   367→    path = download_cached(FHFA_PO_METRO_TXT, "fhfa_hpi_po_metro.txt")
   368→    if not path:
   369→        return []
   370→
   371→    rows = []
   372→    with open(path, "r") as f:
   373→        reader = csv.reader(f, delimiter="\t")
   374→        header = next(reader, None)  # Skip header
   375→        for parts in reader:
   376→            if len(parts) < 6:
   377→                continue
   378→
   379→            cbsa_code = parts[0].strip()
   380→            metro_name = parts[1].strip().strip('"')
   381→            year_str = parts[2].strip()
   382→            qtr_str = parts[3].strip()
   383→            nsa_str = parts[4].strip()
   384→            sa_str = parts[5].strip()
   385→
   386→            if not year_str.isdigit():
   387→                continue
   388→
   389→            nsa = float(nsa_str) if nsa_str and nsa_str != "." else None
   390→            sa = float(sa_str) if sa_str and sa_str != "." else None
   391→
   392→            rows.append({
   393→                "metro_name": metro_name,
   394→                "cbsa_code": cbsa_code,
   395→                "year": int(year_str),
   396→                "quarter": int(qtr_str),
   397→                "hpi_po_nsa": nsa,
   398→                "hpi_po_sa": sa,
   399→            })
   400→
   401→    return rows
   402→
   403→
   404→# ---------------------------------------------------------------------------
   405→# DuckDB Database Creation
   406→# ---------------------------------------------------------------------------
   407→
   408→def build_database(bps_annual, bps_monthly, fhfa_at, fhfa_po):
   409→    """Create the DuckDB database with all tables."""
   410→
   411→    # Remove existing DB
   412→    if os.path.exists(DB_PATH):
   413→        os.remove(DB_PATH)
   414→
   415→    con = duckdb.connect(DB_PATH)
   416→
   417→    # ---- BPS Annual Table ----
   418→    print("\nCreating building_permits_annual table...")
   419→    con.execute("""
   420→        CREATE TABLE building_permits_annual (
   421→            year INTEGER NOT NULL,
   422→            geo_code VARCHAR NOT NULL,
   423→            cbsa_code VARCHAR,
   424→            csa_code VARCHAR,
   425→            geo_name VARCHAR,
   426→            metro_micro VARCHAR,
   427→            units_total INTEGER,
   428→            units_1 INTEGER,
   429→            units_2 INTEGER,
   430→            units_3_4 INTEGER,
   431→            units_5plus INTEGER,
   432→            bldgs_total INTEGER,
   433→            bldgs_1 INTEGER,
   434→            bldgs_2 INTEGER,
   435→            bldgs_3_4 INTEGER,
   436→            bldgs_5plus INTEGER,
   437→            value_total BIGINT,
   438→            value_1 BIGINT,
   439→            value_2 BIGINT,
   440→            value_3_4 BIGINT,
   441→            value_5plus BIGINT,
   442→            PRIMARY KEY (year, geo_code)
   443→        )
   444→    """)
   445→
   446→    if bps_annual:
   447→        con.executemany("""
   448→            INSERT INTO building_permits_annual VALUES (
   449→                ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
   450→            )
   451→        """, [(
   452→            r["year"], r["geo_code"], r.get("cbsa_code"), r.get("csa_code"),
   453→            r["geo_name"], r.get("metro_micro", "2"),
   454→            r["units_total"], r["units_1"], r["units_2"], r["units_3_4"], r["units_5plus"],
   455→            r["bldgs_total"], r["bldgs_1"], r["bldgs_2"], r["bldgs_3_4"], r["bldgs_5plus"],
   456→            r["value_total"], r["value_1"], r["value_2"], r["value_3_4"], r["value_5plus"],
   457→        ) for r in bps_annual])
   458→
   459→    count = con.execute("SELECT COUNT(*) FROM building_permits_annual").fetchone()[0]
   460→    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM building_permits_annual").fetchone()
   461→    print(f"  -> {count:,} rows, {yr_range[0]}-{yr_range[1]}")
   462→
   463→    # ---- BPS Monthly Table ----
   464→    print("Creating building_permits_monthly table...")
   465→    con.execute("""
   466→        CREATE TABLE building_permits_monthly (
   467→            year INTEGER NOT NULL,
   468→            month INTEGER NOT NULL,
   469→            geo_code VARCHAR NOT NULL,
   470→            cbsa_code VARCHAR,
   471→            csa_code VARCHAR,
   472→            geo_name VARCHAR,
   473→            metro_micro VARCHAR,
   474→            units_total INTEGER,
   475→            units_1 INTEGER,
   476→            units_2 INTEGER,
   477→            units_3_4 INTEGER,
   478→            units_5plus INTEGER,
   479→            bldgs_total INTEGER,
   480→            bldgs_1 INTEGER,
   481→            bldgs_2 INTEGER,
   482→            bldgs_3_4 INTEGER,
   483→            bldgs_5plus INTEGER,
   484→            value_total BIGINT,
   485→            value_1 BIGINT,
   486→            value_2 BIGINT,
   487→            value_3_4 BIGINT,
   488→            value_5plus BIGINT,
   489→            PRIMARY KEY (year, month, geo_code)
   490→        )
   491→    """)
   492→
   493→    if bps_monthly:
   494→        con.executemany("""
   495→            INSERT INTO building_permits_monthly VALUES (
   496→                ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
   497→            )
   498→        """, [(
   499→            r["year"], r["month"], r["geo_code"], r.get("cbsa_code"), r.get("csa_code"),
   500→            r["geo_name"], r.get("metro_micro", "2"),
   501→            r["units_total"], r["units_1"], r["units_2"], r["units_3_4"], r["units_5plus"],
   502→            r["bldgs_total"], r["bldgs_1"], r["bldgs_2"], r["bldgs_3_4"], r["bldgs_5plus"],
   503→            r["value_total"], r["value_1"], r["value_2"], r["value_3_4"], r["value_5plus"],
   504→        ) for r in bps_monthly])
   505→
   506→    count = con.execute("SELECT COUNT(*) FROM building_permits_monthly").fetchone()[0]
   507→    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM building_permits_monthly").fetchone()
   508→    print(f"  -> {count:,} rows, {yr_range[0]}-{yr_range[1]}")
   509→
   510→    # ---- FHFA All-Transactions Table ----
   511→    print("Creating fhfa_hpi_all_transactions table...")
   512→    con.execute("""
   513→        CREATE TABLE fhfa_hpi_all_transactions (
   514→            cbsa_code VARCHAR NOT NULL,
   515→            metro_name VARCHAR,
   516→            year INTEGER NOT NULL,
   517→            quarter INTEGER NOT NULL,
   518→            hpi_at_nsa DOUBLE,
   519→            hpi_at_se DOUBLE,
   520→            PRIMARY KEY (cbsa_code, year, quarter)
   521→        )
   522→    """)
   523→
   524→    if fhfa_at:
   525→        con.executemany("""
   526→            INSERT INTO fhfa_hpi_all_transactions VALUES (?, ?, ?, ?, ?, ?)
   527→        """, [(
   528→            r["cbsa_code"], r["metro_name"], r["year"], r["quarter"],
   529→            r["hpi_at_nsa"], r["hpi_at_se"],
   530→        ) for r in fhfa_at])
   531→
   532→    count = con.execute("SELECT COUNT(*) FROM fhfa_hpi_all_transactions").fetchone()[0]
   533→    non_null = con.execute("SELECT COUNT(*) FROM fhfa_hpi_all_transactions WHERE hpi_at_nsa IS NOT NULL").fetchone()[0]
   534→    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM fhfa_hpi_all_transactions WHERE hpi_at_nsa IS NOT NULL").fetchone()
   535→    metros = con.execute("SELECT COUNT(DISTINCT cbsa_code) FROM fhfa_hpi_all_transactions").fetchone()[0]
   536→    print(f"  -> {count:,} rows ({non_null:,} with data), {metros} metros, {yr_range[0]}-{yr_range[1]}")
   537→
   538→    # ---- FHFA Purchase-Only Table ----
   539→    print("Creating fhfa_hpi_purchase_only table...")
   540→    con.execute("""
   541→        CREATE TABLE fhfa_hpi_purchase_only (
   542→            cbsa_code VARCHAR NOT NULL,
   543→            metro_name VARCHAR,
   544→            year INTEGER NOT NULL,
   545→            quarter INTEGER NOT NULL,
   546→            hpi_po_nsa DOUBLE,
   547→            hpi_po_sa DOUBLE,
   548→            PRIMARY KEY (cbsa_code, year, quarter)
   549→        )
   550→    """)
   551→
   552→    if fhfa_po:
   553→        con.executemany("""
   554→            INSERT INTO fhfa_hpi_purchase_only VALUES (?, ?, ?, ?, ?, ?)
   555→        """, [(
   556→            r["cbsa_code"], r["metro_name"], r["year"], r["quarter"],
   557→            r["hpi_po_nsa"], r["hpi_po_sa"],
   558→        ) for r in fhfa_po])
   559→
   560→    count = con.execute("SELECT COUNT(*) FROM fhfa_hpi_purchase_only").fetchone()[0]
   561→    yr_range = con.execute("SELECT MIN(year), MAX(year) FROM fhfa_hpi_purchase_only").fetchone()
   562→    metros = con.execute("SELECT COUNT(DISTINCT cbsa_code) FROM fhfa_hpi_purchase_only").fetchone()[0]
   563→    print(f"  -> {count:,} rows, {metros} metros, {yr_range[0]}-{yr_range[1]}")
   564→
   565→    # ---- Create useful views ----
   566→    print("\nCreating views...")
   567→
   568→    # Annual permits + annual average HPI (for CBSAs that have CBSA codes, 2004+)
   569→    con.execute("""
   570→        CREATE VIEW permits_with_hpi_annual AS
   571→        SELECT
   572→            bp.year,
   573→            bp.geo_code,
   574→            bp.cbsa_code,
   575→            bp.geo_name,
   576→            bp.metro_micro,
   577→            bp.units_total,
   578→            bp.units_1,
   579→            bp.units_2,
   580→            bp.units_3_4,
   581→            bp.units_5plus,
   582→            bp.bldgs_total,
   583→            bp.value_total,
   584→            hpi.avg_hpi_at_nsa,
   585→            hpi.avg_hpi_po_nsa,
   586→            hpi.avg_hpi_po_sa
   587→        FROM building_permits_annual bp
   588→        LEFT JOIN (
   589→            SELECT
   590→                at_q.cbsa_code,
   591→                at_q.year,
   592→                AVG(at_q.hpi_at_nsa) AS avg_hpi_at_nsa,
   593→                AVG(po_q.hpi_po_nsa) AS avg_hpi_po_nsa,
   594→                AVG(po_q.hpi_po_sa) AS avg_hpi_po_sa
   595→            FROM fhfa_hpi_all_transactions at_q
   596→            LEFT JOIN fhfa_hpi_purchase_only po_q
   597→                ON at_q.cbsa_code = po_q.cbsa_code
   598→                AND at_q.year = po_q.year
   599→                AND at_q.quarter = po_q.quarter
   600→            WHERE at_q.hpi_at_nsa IS NOT NULL
   601→            GROUP BY at_q.cbsa_code, at_q.year
   602→        ) hpi
   603→            ON bp.cbsa_code = hpi.cbsa_code
   604→            AND bp.year = hpi.year
   605→    """)
   606→    print("  -> permits_with_hpi_annual view created")
   607→
   608→    # Quarterly permits (aggregated from monthly) + quarterly HPI
   609→    con.execute("""
   610→        CREATE VIEW permits_with_hpi_quarterly AS
   611→        SELECT
   612→            bp.year,
   613→            bp.quarter,
   614→            bp.cbsa_code,
   615→            bp.geo_name,
   616→            bp.metro_micro,
   617→            bp.units_total,
   618→            bp.units_1,
   619→            bp.units_5plus,
   620→            bp.value_total,
   621→            at_q.hpi_at_nsa,
   622→            po_q.hpi_po_nsa,
   623→            po_q.hpi_po_sa
   624→        FROM (
   625→            SELECT
   626→                year,
   627→                CASE
   628→                    WHEN month <= 3 THEN 1
   629→                    WHEN month <= 6 THEN 2
   630→                    WHEN month <= 9 THEN 3
   631→                    ELSE 4
   632→                END AS quarter,
   633→                geo_code,
   634→                cbsa_code,
   635→                geo_name,
   636→                metro_micro,
   637→                SUM(units_total) AS units_total,
   638→                SUM(units_1) AS units_1,
   639→                SUM(units_5plus) AS units_5plus,
   640→                SUM(value_total) AS value_total
   641→            FROM building_permits_monthly
   642→            GROUP BY year, quarter, geo_code, cbsa_code, geo_name, metro_micro
   643→        ) bp
   644→        LEFT JOIN fhfa_hpi_all_transactions at_q
   645→            ON bp.cbsa_code = at_q.cbsa_code
   646→            AND bp.year = at_q.year
   647→            AND bp.quarter = at_q.quarter
   648→        LEFT JOIN fhfa_hpi_purchase_only po_q
   649→            ON bp.cbsa_code = po_q.cbsa_code
   650→            AND bp.year = po_q.year
   651→            AND bp.quarter = po_q.quarter
   652→    """)
   653→    print("  -> permits_with_hpi_quarterly view created")
   654→
   655→    # Summary stats
   656→    print("\n" + "=" * 60)
   657→    print("DATABASE SUMMARY")
   658→    print("=" * 60)
   659→
   660→    tables = con.execute("""
   661→        SELECT table_name FROM information_schema.tables
   662→        WHERE table_schema = 'main' AND table_type = 'BASE TABLE'
   663→        ORDER BY table_name
   664→    """).fetchall()
   665→
   666→    for (tbl,) in tables:
   667→        cnt = con.execute(f"SELECT COUNT(*) FROM {tbl}").fetchone()[0]
   668→        cols = con.execute(f"SELECT COUNT(*) FROM information_schema.columns WHERE table_name = '{tbl}'").fetchone()[0]
   669→        print(f"\n  {tbl}: {cnt:,} rows, {cols} columns")
   670→        # Show year range
   671→        try:
   672→            yr = con.execute(f"SELECT MIN(year), MAX(year) FROM {tbl}").fetchone()
   673→            print(f"    Year range: {yr[0]}-{yr[1]}")
   674→        except:
   675→            pass
   676→
   677→    views = con.execute("""
   678→        SELECT table_name FROM information_schema.tables
   679→        WHERE table_schema = 'main' AND table_type = 'VIEW'
   680→        ORDER BY table_name
   681→    """).fetchall()
   682→
   683→    for (v,) in views:
   684→        cnt = con.execute(f"SELECT COUNT(*) FROM {v}").fetchone()[0]
   685→        print(f"\n  VIEW {v}: {cnt:,} rows")
   686→
   687→    con.close()
   688→    print(f"\nDatabase written to: {DB_PATH}")
   689→    print(f"Database size: {os.path.getsize(DB_PATH) / 1024 / 1024:.1f} MB")
   690→
   691→
   692→def main():
   693→    os.makedirs(DATA_DIR, exist_ok=True)
   694→
   695→    print("=" * 60)
   696→    print("HOUSING SUPPLY DATABASE BUILDER")
   697→    print("=" * 60)
   698→
   699→    # 1. Download Census BPS Annual
   700→    print("\n[1/4] Downloading Census Building Permits - Annual (1980-present)...")
   701→    bps_annual = download_all_bps_annual()
   702→    print(f"  Total annual records: {len(bps_annual):,}")
   703→
   704→    # 2. Download Census BPS Monthly
   705→    print("\n[2/4] Downloading Census Building Permits - Monthly (2000-present)...")
   706→    bps_monthly = download_all_bps_monthly()
   707→    print(f"  Total monthly records: {len(bps_monthly):,}")
   708→
   709→    # 3. Download FHFA HPI
   710→    print("\n[3/4] Downloading FHFA HPI - All Transactions...")
   711→    fhfa_at = download_fhfa_all_transactions()
   712→    print(f"  Total FHFA AT records: {len(fhfa_at):,}")
   713→
   714→    print("\n[4/4] Downloading FHFA HPI - Purchase Only...")
   715→    fhfa_po = download_fhfa_purchase_only()
   716→    print(f"  Total FHFA PO records: {len(fhfa_po):,}")
   717→
   718→    # 4. Build database
   719→    print("\n" + "=" * 60)
   720→    print("BUILDING DUCKDB DATABASE")
   721→    print("=" * 60)
   722→    build_database(bps_annual, bps_monthly, fhfa_at, fhfa_po)
   723→
   724→
   725→if __name__ == "__main__":
   726→    main()
   727→

<system-reminder>
Whenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.
</system-reminder>
mcp__deliberate-thinking__deliberatethinking
{
  "thought": "Now I have a clear picture of the existing build_db.py and the ACS API. Let me plan how to add ACS housing stock data.\n\nKey decisions:\n1. Which ACS tables to include? The user said \"stock of housing\" so the core tables are:\n   - B25001 (Total Housing Units) - the most basic stock measure\n   - B25002 (Occupancy: occupied vs vacant)\n   - B25003 (Tenure: owner vs renter)\n   - B25024 (Units in Structure - structural type breakdown)\n   - B25034 (Year Structure Built - age of housing stock)\n   - B25077 (Median Value) - useful complement\n\n2. ACS 1-year vs 5-year? \n   - 1-year: 2005-2019, 2021-2023 (skip 2020), covers ~500-900+ CBSAs depending on year\n   - 5-year: more CBSAs but overlapping periods make time series tricky\n   - Best approach: use 1-year for the main table since it gives cleaner annual snapshots\n\n3. Table design: I could do one wide table with all variables per CBSA per year, or separate tables per ACS table. One wide table seems better for usability - a single `acs_housing_stock` table.\n\n4. Integration: Add new functions to build_db.py following the existing patterns (download_cached, parse, insert into DuckDB).\n\n5. The API calls: ~19 years x a few calls per year (can batch variables). The Census API allows up to ~50 variables per call, so I can get B25001 + B25002 + B25003 + B25077 in one call, and B25024 + B25034 in separate calls due to their many sub-variables.\n\nPlan:\n- Add ACS download/parse functions to build_db.py\n- Create `acs_housing_stock` table with columns for total units, occupied, vacant, owner, renter, structure type breakdown, year built breakdown, median value\n- Update the combined view to include housing stock data\n- Update main() to add step [5/5] for ACS",
  "nextThoughtNeeded": false,
  "thoughtNumber": 1,
  "totalThoughts": 1
}
{"branches":[],"nextThoughtNeeded":false,"thoughtHistoryLength":1,"thoughtNumber":1,"totalThoughts":1}
📝 Write ancient-drifting-mist.md
/Users/psg24/.claude/plans/ancient-drifting-mist.md
# Plan: Add ACS Housing Stock Data to DuckDB

## Context
The existing `housing_supply.duckdb` has building permits (flow) and HPI (prices) but no measure of the housing **stock**. The ACS 1-Year estimates provide annual MSA/CBSA-level data on total housing units, occupancy, tenure, structure type, age of stock, and median value.

## Data Source
**Census API** - ACS 1-Year Estimates at `metropolitan statistical area/micropolitan statistical area` geography.
- URL pattern: `https://api.census.gov/data/{YEAR}/acs/acs1?get=NAME,{VARS}&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*`
- Years: 2005-2019, 2021-2023 (2020 skipped due to COVID; 2024 may be available)
- No API key required for this volume (~20 calls total)
- Returns JSON array-of-arrays; all values are strings

## ACS Tables to Include

| Table | What it measures | Variables |
|-------|-----------------|-----------|
| B25001 | Total housing units | `_001E` |
| B25002 | Occupancy | `_002E` (occupied), `_003E` (vacant) |
| B25003 | Tenure | `_002E` (owner-occupied), `_003E` (renter-occupied) |
| B25024 | Units in structure | `_002E`-`_011E` (1-det, 1-att, 2, 3-4, 5-9, 10-19, 20-49, 50+, mobile, boat/rv) |
| B25034 | Year structure built | `_002E`-`_011E` (decade buckets from newest to pre-1940) |
| B25077 | Median value (owner-occ) | `_001E` |

## New Table Schema: `acs_housing_stock`

```
cbsa_code VARCHAR NOT NULL     -- 5-digit FIPS
year INTEGER NOT NULL          -- survey year
geo_name VARCHAR
-- B25001 / B25002
total_housing_units INTEGER
occupied_units INTEGER
vacant_units INTEGER
-- B25003
owner_occupied INTEGER
renter_occupied INTEGER
-- B25024: units in structure
struct_1_detached INTEGER
struct_1_attached INTEGER
struct_2 INTEGER
struct_3_4 INTEGER
struct_5_9 INTEGER
struct_10_19 INTEGER
struct_20_49 INTEGER
struct_50_plus INTEGER
struct_mobile INTEGER
struct_boat_rv INTEGER
-- B25034: year built
built_2020_or_later INTEGER
built_2010_2019 INTEGER
built_2000_2009 INTEGER
built_1990_1999 INTEGER
built_1980_1989 INTEGER
built_1970_1979 INTEGER
built_1960_1969 INTEGER
built_1950_1959 INTEGER
built_1940_1949 INTEGER
built_1939_or_earlier INTEGER
-- B25077
median_value_owner_occ INTEGER
PRIMARY KEY (cbsa_code, year)
```

## Implementation Steps

### 1. Add ACS download/parse functions to `build_db.py`
- `download_acs_housing_stock()`: Loop over years 2005-2024 (skip 2020), make 2 API calls per year (one for B25001/B25002/B25003/B25077, one for B25024/B25034), parse JSON, return list of row dicts.
- Use existing `download_cached()` to cache raw JSON responses in `data/raw/acs_{year}_*.json`.

### 2. Add `acs_housing_stock` table creation to `build_database()`
- CREATE TABLE with schema above
- INSERT rows via executemany

### 3. Update `permits_with_hpi_annual` view
- LEFT JOIN `acs_housing_stock` on `cbsa_code` and `year` to include `total_housing_units`, `owner_occupied`, `renter_occupied`, `median_value_owner_occ`.

### 4. Update `main()`
- Add step [5/6] for ACS download, pass data to `build_database()`.

## File to modify
- `/Users/psg24/repos/housing-supply/build_db.py` (all changes in this single file)

## Verification
1. Run `python3 build_db.py` end-to-end
2. Query `SELECT year, COUNT(*) FROM acs_housing_stock GROUP BY year ORDER BY year` to confirm ~500-900 CBSAs per year from 2005-2023
3. Spot-check: `SELECT * FROM acs_housing_stock WHERE cbsa_code = '26420' ORDER BY year` (Houston)
4. Confirm the updated annual view includes housing stock columns
File created successfully at: /Users/psg24/.claude/plans/ancient-drifting-mist.md
ExitPlanMode
{
  "plan": "# Plan: Add ACS Housing Stock Data to DuckDB\n\n## Context\nThe existing `housing_supply.duckdb` has building permits (flow) and HPI (prices) but no measure of the housing **stock**. The ACS 1-Year estimates provide annual MSA/CBSA-level data on total housing units, occupancy, tenure, structure type, age of stock, and median value.\n\n## Data Source\n**Census API** - ACS 1-Year Estimates at `metropolitan statistical area/micropolitan statistical area` geography.\n- URL pattern: `https://api.census.gov/data/{YEAR}/acs/acs1?get=NAME,{VARS}&for=metropolitan%20statistical%20area/micropolitan%20statistical%20area:*`\n- Years: 2005-2019, 2021-2023 (2020 skipped due to COVID; 2024 may be available)\n- No API key required for this volume (~20 calls total)\n- Returns JSON array-of-arrays; all values are strings\n\n## ACS Tables to Include\n\n| Table | What it measures | Variables |\n|-------|-----------------|-----------|\n| B25001 | Total housing units | `_001E` |\n| B25002 | Occupancy | `_002E` (occupied), `_003E` (vacant) |\n| B25003 | Tenure | `_002E` (owner-occupied), `_003E` (renter-occupied) |\n| B25024 | Units in structure | `_002E`-`_011E` (1-det, 1-att, 2, 3-4, 5-9, 10-19, 20-49, 50+, mobile, boat/rv) |\n| B25034 | Year structure built | `_002E`-`_011E` (decade buckets from newest to pre-1940) |\n| B25077 | Median value (owner-occ) | `_001E` |\n\n## New Table Schema: `acs_housing_stock`\n\n```\ncbsa_code VARCHAR NOT NULL     -- 5-digit FIPS\nyear INTEGER NOT NULL          -- survey year\ngeo_name VARCHAR\n-- B25001 / B25002\ntotal_housing_units INTEGER\noccupied_units INTEGER\nvacant_units INTEGER\n-- B25003\nowner_occupied INTEGER\nrenter_occupied INTEGER\n-- B25024: units in structure\nstruct_1_detached INTEGER\nstruct_1_attached INTEGER\nstruct_2 INTEGER\nstruct_3_4 INTEGER\nstruct_5_9 INTEGER\nstruct_10_19 INTEGER\nstruct_20_49 INTEGER\nstruct_50_plus INTEGER\nstruct_mobile INTEGER\nstruct_boat_rv INTEGER\n-- B25034: year built\nbuilt_2020_or_later INTEGER\nbuilt_2010_2019 INTEGER\nbuilt_2000_2009 INTEGER\nbuilt_1990_1999 INTEGER\nbuilt_1980_1989 INTEGER\nbuilt_1970_1979 INTEGER\nbuilt_1960_1969 INTEGER\nbuilt_1950_1959 INTEGER\nbuilt_1940_1949 INTEGER\nbuilt_1939_or_earlier INTEGER\n-- B25077\nmedian_value_owner_occ INTEGER\nPRIMARY KEY (cbsa_code, year)\n```\n\n## Implementation Steps\n\n### 1. Add ACS download/parse functions to `build_db.py`\n- `download_acs_housing_stock()`: Loop over years 2005-2024 (skip 2020), make 2 API calls per year (one for B25001/B25002/B25003/B25077, one for B25024/B25034), parse JSON, return list of row dicts.\n- Use existing `download_cached()` to cache raw JSON responses in `data/raw/acs_{year}_*.json`.\n\n### 2. Add `acs_housing_stock` table creation to `build_database()`\n- CREATE TABLE with schema above\n- INSERT rows via executemany\n\n### 3. Update `permits_with_hpi_annual` view\n- LEFT JOIN `acs_housing_stock` on `cbsa_code` and `year` to include `total_housing_units`, `owner_occupied`, `renter_occupied`, `median_value_owner_occ`.\n\n### 4. Update `main()`\n- Add step [5/6] for ACS download, pass data to `build_database()`.\n\n## File to modify\n- `/Users/psg24/repos/housing-supply/build_db.py` (all changes in this single file)\n\n## Verification\n1. Run `python3 build_db.py` end-to-end\n2. Query `SELECT year, COUNT(*) FROM acs_housing_stock GROUP BY year ORDER BY year` to confirm ~500-900 CBSAs per year from 2005-2023\n3. Spot-check: `SELECT * FROM acs_housing_stock WHERE cbsa_code = '26420' ORDER BY year` (Houston)\n4. Confirm the updated annual view includes housing stock columns\n"
}
The user doesn't want to proceed with this tool use. The tool use was rejected (eg. if it was a file edit, the new_string was NOT written to the file). STOP what you are doing and wait for the user to tell you how to proceed.